Document Type : Original Research Paper

Authors

1 Assistant Professor, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran

2 M.Sc., Faculty of Earth Sciences, Kharazmi University, Tehran, Iran

Abstract

The Urmieh- Dokhtar magmatic belt (UDMB) lying parallel to the Zagros suture zone is resulted from the subduction of Neotethyan oceanic lithosphere beneath the southern margin of Eurasia. The studied volcanic rocks of the Razan- Avaj area are part of UDMB magmatism. These rocks are composed of olivine-basalts, basalts and occasional trachyandesites with alkaline nature. The interlayered stratigraphic relationships of volcanic horizons with sediments of Qom Formation implies Oligo-Miocene age. Major and trace element contents of volcanics and chemical modeling are indicative of significant role of olivine + clinopyroxene + plagioclase fractional crystallization (35-45%) in melt compositional trend. Bulk rock chemistry of theses rocks displays LREE/HREE enrichment and lack of HFSE negative anomaly similar to oceanic island basalts (OIB). It seems that after Eocene magmatic flare-up with obvious magmatic arc signatures in UDMB, during the Oligo-Miocene the origin of magmas has shifted to a deeper asthenospheric mantle. Probably, after the initial stages of the Arabian-Eurasian plate collision in the Late Eocene-Early Oligocene and the slab roll-back, an upwelling asthenospheric mantle is injected into the mantle wedge and is weakly affected by the subduction material, which is the source of Oligo-Miocene melts.

Keywords

Main Subjects

 
Abu-Hamatteh, Z.S.H., 2005- Geochemistry and petrogenesis of mafic magmatic rocks of the Jharol Belt, India: geodynamic implication. Journal of Asian Earth Sciences, 25: 557-581, http://dx.doi.org/10.1016/j.jseaes.2004.05.006.
Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A.,Murata, M., and Ozawa, H., 2016- Eocene K-rich adakitic rocks in the Central Iran: implications for evaluating its Cu-Au-Mo metallogenic potential. Ore Geology Reviews, 72: 323-342, http://dx.doi.org/10.1016/j.oregeorev.2015.07.017.
Ballato, P., Stockli, D.F., Ghassemi, M.R., Landgraf, A., Strecker, M.R., Hassanzadeh, J., Friedrich, A., and Tabatabaei, S.H., 2013- Accommodation of transpressional strain in the Arabia-Eurasia collision zone: new constraints from (U-Th)/He thermochronology in the Alborz mountains, north Iran. Tectonics, 32: 1-18, 10.1029/2012tc003159.
Bolourchi, M.H., 1978- Geology map of Avaj, scale 1:100000 . Geological survey of Iran.
Chiu, H.-Y., Chung, S.-L.,Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., and Iizuka, Y., 2013- Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163: 70-87, http://dx.doi.org/10.1016/j.lithos.2013.01.006.
Condie, K.C., 2005- High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 79: 491-504, http://dx.doi.org/10.1016/j.lithos.2004.09.014.
Cook, C., Briggs, R.M.,Smith, I.E.M., and Maas, R., 2005- Petrology and Geochemistry of Intraplate Basalts in the South Auckland Volcanic Field, New Zealand: Evidence for Two Coeval Magma Suites from Distinct Sources. Journal of Petrology, 46: 473-503, 10.1093/petrology/egh084.
D'Orazio, M., Innocenti, F., Manetti, P., and Haller, M.J., 2004- The Cenozoic back-arc magmatism of the southern extra-Andean Patagonia (44.5-52° S): A review of geochemical data and geodynamic interpretations. Revista de la Asociación Geológica Argentina, 59 525-538,
Eissen, J.-P., Crawford, A.J.,Cotten, J., Meffre, S.,Bellon, H., and Delaune, M., 1998- Geochemistry and tectonic significance of basalts in the Poya Terrane, New Caledonia. Tectonophysics, 284: 203-219, http://dx.doi.org/10.1016/S0040-1951(97)00183-2.
Ersoy, E.Y., 2013- PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turkish Journal of Earth Sciences, 22: 115-125.
Ersoy, Y., and Helvacı, C., 2010- FC–AFC–FCA and mixing modeler: A Microsoft® Excel© spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Computers & Geosciences, 36: 383-390, http://dx.doi.org/10.1016/j.cageo.2009.06.007.
Foley, S.F., Jackson, S.E., Fryer, B.J., Greenouch, J.D., and Jenner, G.A., 1996- Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cosmochimica Acta, 60: 629-638, https://doi.org/10.1016/0016-7037(95)00422-X.
Ghalamghash, J., Mousavi, S., Hassanzadeh, J., and Schmitt, A., 2016- Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran). Journal of Volcanology and Geothermal Research, 327: 192-207, 10.1016/j.jvolgeores.2016.05.001.
Ghasemi, H.and Rezaei-Kahkhaei, M., 2015- Petrochemistry and tectonic setting of the Davarzan-Abbasabad Eocene Volcanic (DAEV) rocks, NE Iran. Mineralogy and Petrology, 109: 235-252, 10.1007/s00710-014-0353-3.
Ghorbani, M.R., Graham, I.T., and Ghaderi, M., 2014- Oligocene–Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. International Geology Review, 56: 1039-1050, 10.1080/00206814.2014.919615.
Humphreys, E.R., and Niu, Y., 2009- On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 112: 118-136, http://dx.doi.org/10.1016/j.lithos.2009.04.038.
Irvine, T.N., and Baragar, W.R.A., 1971- A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523-548.
Kazmin, V.G., Sbortshikov, I.M., Ricou, L.E., Zonenshain, L.P., Boulin, J., and Knipper, A.L., 1986- Volcanic belts as markers of the Mesozoic-Cenozoic active margin of Eurasia. Tectonophysics, 123: 123-152, http://dx.doi.org/10.1016/0040-1951(86)90195-2.
Madanipour, S., Ehlers, T.A.,Yassaghi, A., and Enkelmann, E., 2017- Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U‐Th/He thermochronometry: evidence for the Arabia-Eurasia collision in the NW Iranian Plateau. Tectonics, 10.1002/2016TC004291.
Mattsson, H.B., and Oskarsson, N., 2005- Petrogenesis of alkaline basalts at the tip of a propagating rift: Evidence from the Heimaey volcanic centre, south Iceland. Journal of Volcanology and Geothermal Research, 147: 245-267, https://doi.org/10.1016/j.jvolgeores.2005.04.004.
McDonough, W.F., 1990- Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters, 101: 1-18, https://doi.org/10.1016/0012-821X(90)90119-I.
McKenzie, D., and O'Nions, R.K., 1991- Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32: 1021-1091, 10.1093/petrology/32.5.1021.
Moghadam, H.S., Rossetti, F., Lucci, F., Chiaradia, M., Gerdes, A., Martinez, M.L., Ghorbani, G., and Nasrabady, M., 2016- The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran. Lithos, 248-251: 517-535, https://doi.org/10.1016/j.lithos.2016.01.019.
Morley, C.K., Kongwung, B., Julapour, A.A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K., and Kazemi, H., 2009- Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area. Geosphere, 5: 325-362, 10.1130/ges00223.1.
Nelson, S.T., and Montana, A., 1992- Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist, 77: 1242-1249.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., and Jolivet, L., 2008- Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106: 380-398, http://dx.doi.org/10.1016/j.lithos.2008.09.008.
Pang, K.-N., Chung, S.-L., Zarrinkoub, M.H., Chiu, H.-Y., and Li, X.-H., 2014- On the magmatic record of the Makran arc, southeastern Iran: Insights from zircon U-Pb geochronology and bulk-rock geochemistry. Geochemistry, Geophysics, Geosystems: 10.1002/2014GC005262, 10.1002/2014gc005262.
Pang, K.-N., Chung, S.-L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.-Y., Chu, C.-H., Lee, H.-Y., and Lo, C.-H., 2013- Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos, 180–181: 234-251, http://dx.doi.org/10.1016/j.lithos.2013.05.009.
Pearce, J., and Norry, M., 1979- Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33-47, 10.1007/bf00375192.
Pearce, J.A., 1982- Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R. S., ed., Andesites: New York, NY, John Wiley & Sons: 525-548.
Pearce, J.A., 2008- Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14-48, http://dx.doi.org/10.1016/j.lithos.2007.06.016.
Pearce, J.A., and Parkinson, I.J., 1993- Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society, London, Special Publications, 76: 373-403, 10.1144/gsl.sp.1993.076.01.19.
Rollinson, H.R., 2014- Using geochemical data: evaluation, presentation, interpretation. Routledge, 384 p., https://doi.org/10.4324/9781315845548
Saccani, E., Beccaluva, L., Photiades, A., and Zeda, O., 2011- Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian–Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic–Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos, 124: 227-242, http://dx.doi.org/10.1016/j.lithos.2010.10.009.
Sepidbar, F., Shafaii Moghadam, H., Zhang, L., Li, J.-W., Ma, J., Stern, R.J., and Lin, C., 2019- Across-arc geochemical variations in the Paleogene magmatic belt of Iran. Lithos, 344-345: 280-296, https://doi.org/10.1016/j.lithos.2019.06.022.
Smith, V.C., Blundy, J.D., and Arce, J.L., 2009- A Temporal Record of Magma Accumulation and Evolution beneath Nevado de Toluca, Mexico, Preserved in Plagioclase Phenocrysts. Journal of Petrology, 50: 405-426, 10.1093/petrology/egp005.
Sosson, M., Rolland, Y., Müller, C., Danelian, T., Melkonyan, R., Kekelia, S., Adamia, S., Babazadeh, V., Kangarli, T., Avagyan, A., Galoyan, G., and Mosar, J., 2010- Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geological Society, London, Special Publications, 340: 329-352, 10.1144/sp340.14.
Sun, S.-S., and McDonough, W.F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-345.
Taylor, S.R., and McLennan, S.M., 1995- The geochemical evolution of the continental crust. Reviews of Geophysics, 33: 241-265, 10.1029/95rg00262.
Topuz, G., Altherr, R., Schwarz, W., Siebel, W., Satır, M., and Dokuz, A., 2005- Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (Eastern Pontides, Turkey). Contributions to Mineralogy and Petrology, 150: 441-455, 10.1007/s00410-005-0022-y.
Torabi, G., Arai, S., and Abbasi, H., 2014- Eocene continental dyke swarm from Central Iran (Khur area). Petrology, 22: 617-632, 10.1134/S086959111406006X.
Van der Boon, A., Kuiper, K.F., Villa, G., Renema, W., Meijers, M.J.M., Langereis, C.G., Aliyeva, E., and Krijgsman, W., 2017- Onset of Maikop sedimentation and cessation of Eocene arc volcanism in the Talysh Mountains, Azerbaijan. Geological Society, London, Special Publications, 428: 145-169, 10.1144/sp428.3.
Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., 2011- A Paleogene extensional arc flare-up in Iran. Tectonics, 30: TC3008, 10.1029/2010tc002809.
Weaver, B.L., 1991- The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters, 104: 381-397.
White, W.M., 2010- Oceanic Island Basalts and Mantle Plumes: The Geochemical Perspective. Annual Review of Earth and Planetary Sciences, 38: 133-160, doi:10.1146/annurev-earth-040809-152450.
Willbold, M., and Stracke, A., 2006- Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 7: 10.1029/2005GC001005, 10.1029/2005GC001005.
Wilson, B.M., 2007- Igneous petrogenesis a global tectonic approach. Springer Science & Business Media, Springer, Dordrecht, 466 p., https://doi.org/10.1007/978-94-010-9388-0
Winchester, J.A., and Floyd, P.A., 1977- Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343, http://dx.doi.org/10.1016/0009-2541(77)90057-2.
Woodhead, J.D., 1989- Geochemistry of the Mariana arc (western Pacific): Source composition and processes. Chemical Geology, 76: 1-24, http://dx.doi.org/10.1016/0009-2541(89)90124-1.
Zhang, Y., Liu, J., and Guo, Z., 2010- Permian basaltic rocks in the Tarim basin, NW China: Implications for plume–lithosphere interaction. Gondwana Research, 18: 596-610, http://dx.doi.org/10.1016/j.gr.2010.03.006.
Zhao, J.-H., and Zhou, M.-F., 2007- Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152: 27-47, http://dx.doi.org/10.1016/j.precamres.2006.09.002.
Zhou, M.-F., Zhao, J.-H., Jiang, C.-Y., Gao, J.-F., Wang, W., and Yang, S.-H., 2009- OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113: 583-594, http://dx.doi.org/10.1016/j.lithos.2009.06.027.
Zindler, A., and Hart, S., 1986- Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571, doi:10.1146/annurev.ea.14.050186.002425.