Document Type : Original Research Paper


1 Assistant Professor, Department of Geology, Faculty of Sciences, University of Lorestan, Khoramabad, Iran

2 Associate Professor, Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan, Iran

3 Assistant Professor, Department of Geology, Faculty of Sciences, University of Birjand, Birjand, Iran

4 Professor, Institute of Geology and Geophysics, Chinese Academy of Sciences, China


The Maher abad and Khopik porphyry Cu deposits occurred in the Upper Eocene (39-37 Ma) in Lut block. All of them associated with intermediate (mostly monzonite) rocks. Porphyry deposits are closely associated with oxidized magmas. Oxygen fugacity (fO2) is a key factor that controls the formation of porphyry Cu deposits. The composition of the major and trace elements of zircon grains related to several ore-bearing monzonite were measured in Maher abad and Khopik porphyry copper indices. Zircon grains show moderate to low Ce4+/Ce3+ with a range of 19 to 610 and an average of 155. The average of oxygen fugacity (logfO2) values of Meher abad and Khopik ore-bearing magmas, range ∆FMQ -3.2 to MFMQ -1.3 with mean ∆FMQ -2.2, indicate formation under moderate oxidation conditions (between Ni-NiO (NNO) and Faylite magnetite-quartz (FMQ) buffers, but magnetite-hematite (HM) buffer, which ), which is not ideal for the formation of porphyry deposits. This is supported by whole-rock and Sr-isotopic data, and absence of high oxidation minerals such as hematite, and the poor adakitic charactristic of rocks in both deposits, which are due to factors involved in magma origin such as rock type and partial melting rate (possibly peridotite with low participation of slab).


Main Subjects

Aghazadeh, M., Hou, Z., Badrzadeh, Z. and Zhou, L., 2015- Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U–Pb and molybdenite Re – Os geochronology: Ore Geology Reviews 70, 385-406.
Arjmandzadeh, R., Karimpour, M. H., Mazaheri, S. A., Santos, J. F., Medina, J. M. and Homam, S.M., 2011- Sr/Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran): Journal of Asian Earth Sciences 41, 283-296.
Arjmandzadeh, R. and Santos, J. F., 2014- Sr-Nd isotope geochemistry and tectonomagmatic setting of  the Dehsalm Cu-Mo porphyry mineralizing intrusives from Lut Block, eastern Iran: International  Journal of Earth Sciences 103 (1), 123-140.
Asadi, S., Moore, F. and Zarasvandi, A., 2014- Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review: Earth-Sci. Rev. 138, 25–46.
Babazadeh, S. A. and de Wever, P., 2004- Early Cretaceous radiolarian assemblages from radiolarites in the Sistan Suture (eastern Iran): Geodiversitas, 26, 185–206.
Baker, T., Ash, C. H. and Thompson, J. F. H., 1997- Geological setting and characteristics of the Red Chris porphyry copper–gold deposit, northwestern British Columbia: Explor. Min. Geol. 6 (4), 297–316.
Ballard, J. R., Palin, J. M., and Campbell, I. H., 2002- Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile: Contributions to Mineralogy and Petrology 144, 347–364.
Blundy, J. and Wood, B., 1994- Prediction of crystal-melt partition coefficients from elastic moduli: Nature 372, 452–454.
Cherniak, D. J., Watson, E. B. and Hanchar, J. M., 1997- Rare-earth diffusion in zircon: Chemical Geology, 134, 289–301.
Chiaradia, M., Merino, D. and Spikings, R., 2009a- Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru): Earth Planet. Sci. Lett. 288,
Chiaradia, M., Muntener, O., Beate, B., Fontignie, D., 2009b- Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling: Contrib. Mineral. Petrol. 158, 563–588.
Chiaradia, M., 2014- Copper enrichment in arc magmas controlled by overriding plate thickness: Nature Geosci. 7, 43–46.
Chou, I. M., 1978- Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor: Am. Mineral. 63, 690–703.
Cooke, D. R., Hollings, P. and Walshe, J. L., 2005- Giant porphyry deposits: characteristics, distribution, and tectonic controls: Economic Geology 100, 801–818.
Defant, M. J. and Drummond, M. S., 1990- Derivation of some modern arc magmas by melting of young subduction lithosphere: Nature 347, 662–5.
Dilles, J. H., 1987- Petrology of the Yerington batholith, Nevada: evidence for evolution of porphyry copper ore fluids: Economic Geology 82, 1750–1789.
Cooke, D. R., Hollings, P. and Walsh, J. L., 2005- Giant porphyry deposits: characteristics, distribution, and tectonic controls: Economic Geology 100, 801–818.
Cooke, D. R., Deyell, C. L., Waters, P. J., Gonzales, R. I. and Zaw, K., 2011- Evidence for magmatic– hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio District, Philippines: Economic Geology 106 (8), 1399–1424.
Ferry, J. M. and Watson, E. B., 2007- New thermodynamic models and revised calibrations for the ti–in–zircon and zr–in–rutile thermometers: Contributions to Mineralogy and Petrology 154(4), 429–437.
Griffin, W. L., Powell, W. J., Pearson, N. J. and O'Reilly, S. Y., 2008- GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester, P. (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues: Mineralogical Association of Canada Short Course 40, 308–311.
Halter, W., Heinrich, C. and Pettke, T., 2005- Magma evolution and the formation of porphyry Cu– Au ore fluids: evidence from silicate and sulfide melt inclusions: Mineral. Deposita 39 (8), 845– 863.
Han, Y. G., Zhang, S. H., Pirajno, F., Zhou, X. W., Zhao, G. C., Qu, W. J., Liu, S. H., Zhang, J. M., Liang, H. B. and Yang, K., 2013- U–Pb and Re–Os isotopic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China: insights into the oxidation state of granitoids and Mo (Au) mineralization: Ore Geol. Rev. 55, 29–47.
Hattori, K. H. and Keith, J. D., 2001- Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA: Mineralium Deposita 36, 799–806.
Hattori, K., Wang, J., Kobylinski, C., Baumgartner, R., Morfin, S. and Shen, P., 2017- Zircon composition: indicator of fertile igneous rocks related to porphyry copper deposits (Extended Abstract): Soc. Geol. Applied Mineral Deposits 2, 295–298.
Hattori. K., 2018- Porphyry Copper Potential in Japan Based on Magmatic Oxidation State: Resource Geology 68(2), 126-137.
Hedenquist, J. W., Arribas, A. and Reynolds, T. J., 1998- Evolution of an intrusion-centered hydrothermal system: Far Southeast–Lepanto porphyry and epithermal Cu–Au deposits, Philippines: Economic Geology 93 (4), 373–404.
Hofmann, A.W., 1988- Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust: Earth Planet. Sci. Lett. 90, 297–314.
Hou, Z. Q., Yang, Z. M., Lu, Y. J., Kemp, A., Zheng, Y. C., Li, Q. Y., Tang, J. X., Yang, Z. S. and Duan, L. F., 2015- A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones: Geology 43, 247–250.
Huebner, J. S. and Sato, M., 1970- The oxygen fugacity–temperature relationships of manganese oxide and nickel oxide buffers: Am. Mineral. 55, 934–952.
Imai, A., Ohbuchi, Y., Tanaka, T., Morita, S. and Yasunaga, K., 2007- Characteristics of porphyry Cu mineralization at Waisoi (Namosi district), Viti Levu, Fiji: Resour. Geol., 57 (4), 374–385.
Ishihara, S., 1977- The magnetite-series and ilmenite-series granitic rock: Min. Geol., 27, 930–941.
Ji, W. Q., Wu, F. Y., Chung, S. L., Li, J. X. and Liu, C. Z., 2009- Zircon U-Pb geochronology and Hf  isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet: Chemical Geology 262, 229-245.
Jugo, P. J., Luth, R. W. and Richards, J. P., 2005- Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts: Geochim. Cosmochim. Acta, 69 (2), 497–503.
Karimpour, M. H., Stern, C. R., Farmer, L., Saadat, S. and Malekzadeh Shafaroudi, A., 2011- Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran: Journal of Geopersia, 1 (1), 19-36.
Karimpour, M. H. and Sadeghi, M., 2018- A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran: Ore Geology 104: 522-539.
Kay, R.W. and Kay, S. M., 1993- Delamination and delamination magmatism: Tectonophysics 219, 177–189.
Kay, R.W. and Kay, S.M., 2002- Andean adakites: three ways to make them: Acta Petrol. Sin. 18, 303–311.
Lee, C. T. A., Luffi, P., Chin, E. J., Bouchet, R., Dasgupta, R., Morton, D. M., Le Roux, V., Yin, Q. Z. and Jin, D., 2012- Copper systematics in arc magmas and implications for crust–mantle differentiation: Science 336, 64–68.
Li, J. W., Zhao, X. F., Zhou, M. F., Vasconcelos, P., Ma, C. Q., Deng, X. D., de Souza, Z. S., Zhao, Y. X. and Wu, G., 2008- Origin of the Tongshankou porphyry-skarn Cu–Mo deposit, eastern Yangtze craton, Eastern China: geochronological, geochemical, and Sr–Nd–Hf isotopic constraints: Mineral. Deposita 43 (3), 315–336.
Liang, H. Y., Campbell, I. H., Allen, C., Sun, W. D., Liu, C. Q., Yu, H. X., Xie, Y. W. and Zhang, Y. Q., 2006- Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet: Mineral. Deposita 41 (2), 152–159.
Liang, H. Y., Sun, W. D., Su, W. C. and Zartman, R. E., 2009- Porphyry copper–gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration: Economic Geology 104 (4), 587–596.
Ling, M. X., Li, Y., Ding, X., Teng, F. Z., Yang, X. Y., Fan, W. M., Xu, Y. G. and Sun, W. D., 2013- Destruction of the North China Craton induced by ridge subductions: Geology 121 (2), 197–213.
Liu, X., Xiong, X., Audétat, A., Li, Y., Song, M., Li, L., Sun, W. and Ding, X., 2014- Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions: Geochim. Cosmochim. Acta 125, 1–22.
Lu, Y. J., Loucks, R. R., Fiorentini, M. L., Yang, Z. M. and Hou, Z. Q., 2015- Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet: Geology 43, 583–586.
Ma, Q., Zheng, J. P., Xu, Y. G., Griffin, W. L. and Zhang, R. S., 2015- Are continental ‘‘adakites” derived from thickened or foundered lower crust?: Earth Planet. Sci. Lett. 419, 125–133.
Malekzadeh Shafaroudi, A., Karimpour, M. H. and Stern, C. R., 2015- The Khopik porphyry copper-gold  prospect, Lut Block, Eastern Iran: geology, alteration, mineralization, fluid inclusion, and oxygen isotope studies: Ore geology Reviews 65 (2), 522–544.
Martin, H., 1999- Adakitic magmas: modern analogues of Archaean granitoids: Lithos 46, 411–429.
Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. and Champion, D., 2005- An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution: Lithos 79, 1–24.
Mavrogenes, J. A. and O'Neill, H. S. C., 1999- The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas: Geochim. Cosmochim. Acta 63 (7–8), 1173–1180.
McCall, G. J. H., 1997- The geotectonic history of the Makran and adjacent areas of southern Iran: Asian Earth Sci. 15, 517–531.
McDonough, W., and Sun, S., 1995- The composition of the Earth: Chemical Geology 120, 223–253.
Meyers, J. and Eugster, H. P., 1983- The system Fe-Si-O: oxygen buffer calibrations to 1,500 K: Contrib. Mineral. Petrol. 82, 75–90.
Mungall, J. E., 2002- Roasting the mantle: slab melting and the genesis of major Au and Aurich Cu deposits: Geology 30 (10), 915–918.
Oyarzun, R., Marquez, A., Lillo, J., Lopez, I. and Rivera, S., 2001- Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism: Miner. Depos. 36, 794–798.
Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Khatib, M. M., Mohammadi, S. S., Chiu, H. Y., Chu, C. H., Lee, H. Y. and Lo, C. H., 2013- Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications: Lithos, 180–181, 234–251.
Peacock, S. M., Rushmer, T. and Thompson, A. B., 1994- Partial melting of subducting oceanic crust: Earth Planet. Sci. Lett. 121, 227–244.
Qiu, J. T., Yu, X. Q., Santosh, M., Zhang, D. H., Chen, S. Q., and Li, P. J., 2013- Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China: Mineralium Deposita 48, 545–556.
Rapp, R. P., Shimizu, N., Norman, M. D. and Applegate, G. S., 1999- Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa: Chem. Geol. 160, 335–356.
Rapp, R. P., Shimizu, N. and Norman, M. D., 2003- Growth of early continental crust by partial melting of eclogite: Nature 425, 605–609.
Richards, J. P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012- High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the  Tethyan arcs of Central and Eastern Iran and Western Pakistan: Economic Geology 107, 295–332.
Richards, J. P., 2013- Giant ore deposits formed by optimal alignments and combinations of geological processes: Nat. Geosci. 6, 911–916.
Saccani, E., Delavari, M., Beccaluva, L. and Amini, S., 2010- Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): implication for the evolution of the Sistan Ocean: Lithos 117, 209-228.
Seedorff, E. and Einaudi, M. T., 2004b- Henderson porphyry molybdenum system. Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids: Econ. Geol. Bull. Soc. Econ. Geol. 99 (1), 39–72.
Siahcheshm, K., Calagari, A. and Abedini, A., 2014- Hydrothermal evolution in the Maher-Abad porphyry Cu-Au deposit, SW Birjand, Eastern Iran: Evidence from fluid inclusions: Ore Geology Reviews, 58, 1-13.
Shannon, R. T., 1976- Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica, Section A: Crystal Physics, Diffraction: Theoretical and General Crystallography 32(5), 751–767.
Shen. P., Hattori. K., Jackson. S. and Seitmuratova. E., 2015- Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt: Economic Geology 110 (7), 1861-1878.
Smythe, D. J. and Brenan, J. M., 2015- Cerium oxidation state in silicate melts: combined fO(2), temperature and compositional effects: Geochim. Cosmochim. Acta 170, 173–187.
Sillitoe, R. H., 2010- Porphyry copper systems: Economic Geology 105, 3–41.
Sun, W. D., Arculus, R. J., Bennett, V. C., Eggins, S. M. and Binns, R. A., 2003a- Evidence for rheni- um enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea): Geology 31 (10), 845–848.
Sun, W. D., Bennett, V. C., Eggins, S. M., Arculus, R. J. and Perfit, M. R., 2003b- Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results: Chem. Geol. 196 (1–4), 259–281.
Sun, W. D., Arculus, R. J., Kamenetsky, V. S. and Binns, R. A., 2004a- Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization: Nature 431 (7011), 975–978.
Sun, W. D., Ling, M. X., Yang, X. Y., Fan, W. M., Ding, X. and Liang, H. Y., 2010- Ridge subduction and porphyry copper–gold mineralization: an overview, Sci. China Ser: Earth Sci. 53 (4), 475–484.
Sun, W. D., Zhang, H., Ling, M. X., Ding, X., Chung, S. L., Zhou, J. B., Yang, X. Y. and Fan, W. M., 2011- The genetic association of adakites and Cu–Au ore deposits: Int. Geol. Rev. 53 (5–6), 691–703.
Sun, W. D., Ling, M. X., Chung, S. L., Ding, X., Yang, X. Y., Liang, H. Y., Fan, W. M., Goldfarb, R. and Yin, Q. Z., 2012a- Geochemical constraints on adakites of different origins and copper mineralization: Geol. 120 (1), 105–120.
Sun, W. D., Li, S., Yang, X. Y., Ling, M. X., Ding, X., Duan, L. A., Zhan, M. Z., Zhang, H. and Fan, W. M., 2013a- Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions:Int. Geol. Rev. 55 (3), 311–321.
Sun, W. D., Liang, H. Y., Ling, M. X., Zhan, M. Z., Ding, X., Zhang, H., Yang, X. Y., Li, Y. L., Ireland, T. R., Wei, Q. R. and Fan, W. M., 2013b- The link between reduced porphyry copper deposits and oxidized magmas: Geochim. Cosmochim. Acta 103, 263–275.
Sun, W., Zhang, L. and Kai, W., 2015- Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China: Geochimica et Cosmochimica Acta 206, 343-363.
Tirrul, R., Bell, I. R., Griffis, R. J. and Camp, V. E., 1983- The Sistan suture zone of eastern Iran: Geol. Soc. Am. Bull. 94, 134–150.
Trail, D., Watson, E. B. and Tailby, N. D., 2012-  Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas: Geochimica et Cosmochimica Acta 97, p. 70–87.
Vila, T. and Sillitoe, R. H., 1991- Gold-rich porphyry systems in the Maricunga Belt, Northern Chile: Econ. Geol. Bull. Soc. Econ. Geol. 86 (6), 1238–1260.
Vila, T., Sillitoe, R. H., Betzhold, J. and Viteri, E., 1991- The porphyry gold deposit at Marte, Northern Chile: Econ. Geol. Bull. Soc. Econ. Geol. 86 (6), 1271–1286.
Wilkinson, J. J., 2013- Triggers for the formation of porphyry ore deposits in magmatic arcs: Nat. Geosci. 6, 917–925.
Wones, D. R., 1989- Significance of the assemblage titanite+magnetite+quartz in granitic rocks: Amer. Mineral. 74,  744–749.
Xie, L.W., Zhang, Y. B., Zhang, H. H., Sun, J. F. and Wu, F. Y., 2008- In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite: Chinese Science Bulletin 53, 1565–1573.
Xiao, L. and Clemens, J. D., 2007- Origin of potassic (C-type) adakite magmas: experimental and field constraints: Lithos 95:399–414.
Xiong, X. L., Adam, J., Green, T. H., Niu, H. C., Wu, J. H. and Cai, Z. Y. 2006- Trace element characteristics of partial melts produced by melting of metabasalts at high pressures: constraints on the formation condition of adakitic melts: Sci. China Ser. D-Earth Sci. 49, 915–925.
Zarrinkoub, M. H., Pang, K. N., Chung, S. L., Khatib, M. M., Mohammadi, S. S., Chiu, H. Y. and Lee, H. Y., 2012- Zircon U/Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran: Lithos  154, 392-405.
Zhang, Ch., Wei-dong, S., Wang, J., Zhang, L., Sun, S. and Wu, K., 2017- Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China: Geochimica et Cosmochimica Acta 206, 343–363.
Zhang, H., Ling, M. X., Liu, Y. L., Tu, X. L., Wang, F. Y., Li, C. Y., Liang, H. Y., Yang, X. Y.,  Arndt, N. T. and Sun, W. D.,  2013b- High oxygen fugacity and slab melting linked to Cu mineralization: evidence from Dexing porphyry copper deposits, southeastern China: Geology 121 (3), 289–305.
Zhang, H., Li, C. Y., Yang, X. Y., Sun, Y. L., Deng, J. H., Liang, H. Y., Wang, R. L., Wang, B. H., Wang, Y. X. and Sun, W. D., 2013a- Shapinggou: the largest Climax-type porphyry Mo deposit in China: Int. Geol. Rev. 56, 313–331.