Document Type : Original Research Paper


1 Department of Earth Science, Mahallat Branch, Islamic Azad University, Mahallat, Iran

2 Geological Survey of Iran, Tehran, Iran

3 Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran


Nineh Pb-Zn deposit is located in the east of the Markazi province, in the Middle to Upper Jurassic rock units of the Malayer-Esfahan  metallogenic belt. Stratified and epigenetic mineralization, in the form of veins, replacement and open spaces filling, including the main minerals of galena, sphalerite and barite accompanied by dolomite and siliceous alterations are observed. The microthermometry results of fluid inclusions in calcite and barite, display mean homogenization temperature of about 168.6°C and 127.3°C, and a mean salinity of 5.7 and 13.9 wt. % NaCl equiv., respectively, which indicates slight difference in their formation conditions. The homogenization temperature versus salinity diagram suggests a basinal brine fluid mineralizer and mixing and cooling processes for the mineralization. The values of δ34S in galena and sphalerite (7.5‰ to 21.5‰) of this deposit are similar to the values of δ34S in the upper Mississippi deposits, indicating the supply of sulfur during the process of thermochemical reduction of sulfate. The values of δ18OSMOW (-9.2 to -11.2‰) and δ13CPDB (0.1 to 0.5‰) of the calcite veins indicate a multi-origin of oxygen, and the origin of carbon from dissolved and remobilized marine carbonates. According to the evidence obtained during this study, the Nineh deposit can be classified as the Mississippi Valley type deposits, which was formed during the orogeny processes and the movement of basinal brine  fluids.


Main Subjects

Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International journal of earth sciences. 94, 401-419.  10.1007/s00531-005-0481-4.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics. 229, 211-238.  10.1016/0040-1951(94)90030-2.
Azizi, H., and Jahangiri, A., 2008. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. Journal of Geodynamics. 45, 178-190.  10.1016/j.jog.2007.11.001.
Bakker, R. J., 2011. The use of quantities, units and symbols in fluid inclusion research. Berichte der Geology. Bundesanstalt. 87, 5-11.
Bodnar, R., Lecumberri-Sanchez, P., Moncada, D., and Steele-MacInnis, M., 2014. Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry. 2nd edn. Elsevier, Oxford. 119, 142. DOI:10.1016/B978-0-08-095975-7.01105-0
Brown, P. E., 1989. FLINCOR; a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist. 74, 1390-1393.
Dunham, K. C., 1937. The paragenesis and color of fluorite in the English Pennines. American Mineralogist: Journal of Earth and Planetary Materials. 22, 468-478.
Ehya, F., Lotfi, M., and Rasa, I., 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study. Journal of Asian Earth Sciences. 37, 186-194.  10.1016/j.jseaes.2009.08.007.
Emami, M. H., 1981. Géologie de la région de Quom-Aran (Iran). Contribution à l’étude dynamique et géochimique du volcanisme tertiaire de l’Iran central, Université Joseph-Fourier-Grenoble I.
Ghasemi, A., and Talbot, C. J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences. 26, 683-693.  10.1016/j.jseaes.2005.01.003.
Goldhaber, M., and Kaplan, I., 1975. Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Science. 119, 42-55.
Goldstein, R. H., and Reynolds, T. J., 1994. Systmatyc in Fluid inclusion microthermometry in Diagenetic Minerals,. SEPM Society for Sedimentary Geology .183 p.
Gonfiantini, R., 1978. Standards for stable isotope measurements in natural compounds. Nature. 271, 534-536.  10.1038/271534a0.
Hoefs, J., 2009. Stable isotope geochemistry, Springer, Springer Berlin, Heidelberg.286p.
Jørgensen, B. B., Isaksen, M. F., and Jannasch, H. W., 1992. Bacterial sulfate reduction above 100 C in deep-sea hydrothermal vent sediments. Science. 258, 1756-1757.  10.1126/science.258.5089.1756.
Keim, M. F., and Markl, G., 2015. Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite. American Mineralogist. 100, 1584-1594.  10.2138/am-2015-5183.
Kesler, S. E., 1996. Appalachian Mississippi Valley-type deposits: paleoaquifers and brine provinces. Soc Econ Geol Spec Pub. 4, 29-57.
Kesler, S. E., 2005. Ore-forming fluids. Elements. 1, 13-18.  10.2113/gselements.1.1.13.
Kiyosu, Y., 1980. Chemical reduction and sulfur-isotope effects of sulfate by organic matter under hydrothermal conditions. Chemical Geology. 30, 47-56.  10.1016/0009-2541(80)90115-1.
Leach, D. L., Sangster, D. F., Kelley, K. D., Large, R. R., Garven, G., Allen, C. R., Gutzmer, J., and Walters, S., 2005. Sediment-hosted lead-zinc deposits: A global perspective. Economic Geology. 100, 561-607.
Li, B., Zhou, J.-X., Huang, Z.-L., Yan, Z.-F., Bao, G.-P., and Sun, H.-R., 2015. Geological, rare earth elemental and isotopic constraints on the origin of the Banbanqiao Zn–Pb deposit, southwest China. Journal of Asian Earth Sciences. 111, 100-112.  10.1016/j.jseaes.2015.08.007.
Liaghat, S., Moore, F., and Jami, M., 2000. The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Mountains, SW Iran. Mineralium Deposita. 35, 72-78.
Liu, J., 1997. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan. Acta Miner. Sin. 17, 448-456.
Luo, K., Zhou, J. X., Huang, Z. L., Wang, X. C., Wilde, S. A., Zhou, W., and Tian, L., 2019. New insights into the origin of early Cambrian carbonate-hosted Pb-Zn deposits in South China: A case study of the Maliping Pb-Zn deposit. Gondwana Research. 70, 88-103.  10.1016/
Mohajjel, M., Fergusson, C., and Sahandi, M., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences. 21, 397-412.  10.1016/S1367-9120(02)00035-4.
Nejadhadad, M., Taghipour, B., Zarasvandi, A., Somarin, A. K., 2016. Geological, geochemical, and fluid inclusion evidences for the origin of the Ravanj Pb- Ba- Ag deposit, north of Delijan city, Markazi Province, Iran. Turkish Journal of Earth Sciences. 25, 179-200.
Ohmoto, H., 1997. Sulfur and carbon isotopes, in:  Barnes, H. (Eds.), Geochemistry of Hydrothermal Ore Deposit,3rd ed., New York, John Wiley and Sons (1997), pp. 517-611.
Orr, W. L., 1974. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation—study of Big Horn basin Paleozoic oils. AAPG bulletin. 58, 2295-2318.
Paytan, A., Kastner, M., Campbell, D., and Thiemens, M. H., 2004. Seawater sulfur isotope fluctuations in the Cretaceous. Science. 304, 1663-1665.  10.1126/science.1095258.
Qalamqash, J., and Babakhani, A., 1995. Geological map of Kahak on the scale of 1:100000. Map, Tehran, Iran.
Rajabi, A., Rastad, E., and Canet, C., 2012. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review. 54, 1649-1672.  10.1080/00206814.2012.659110.
Ramdohr, P., 1969. The ore minerals and their intergrowths, Pergamon Press. 1174 p.
Sasaki, A., and Krouse, H. R., 1969. Sulfur isotopes and the Pine Point lead-zinc mineralization. Economic Geology. 64, 718-730.  10.2113/gsecongeo.64.7.718.
Savard, M., Chi, G., Sami, T., Williams-Jones, A., and Leigh, K., 2000. Fluid inclusion and carbon, oxygen, and strontium isotope study of the Polaris Mississippi Valley-type Zn–Pb deposit, Canadian Arctic Archipelago: implications for ore genesis. Mineralium Deposita. 35, 495-510.
Seal, R. R., 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in mineralogy and geochemistry. 61, 633-677.  10.2138/rmg.2006.61.12.
Taylor, Jr, H. P., Frechen, J., and Degens, E. T., 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta. 31, 407-430.  10.1016/0016-7037(67)90051-8.
Vaughan, D., and Ixer, R., 1980. Studies of sulfide mineralogy of north Pennine ores and its contribution to genetic models. Transactions of  the Institutionof Mining and Metallurgy Sectin B-Applied Earth Science. 89, B99-B109.
Veizer, J., and Hoefs, J., 1976. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta. 40, 1387-1395.  10.1016/0016-7037(76)90129-0.
Wilkinson, J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos. 55, 229-272.  10.1016/S0024-4937(00)00047-5.
Zhang, C., Wu, Y., Hou, L., and Mao, J., 2015. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan–Yunnan–Guizhou Zn–Pb triangle, southwest China: Implications from age-dating studies in the past decade and the Sm–Nd age of Jinshachang deposit. Journal of Asian Earth Sciences. 103, 103-114.  10.1016/j.jseaes.2014.08.013.
Zhou, J.-X., Wang, X.-C., Wilde, S. A., Luo, K., Huang, Z.-L., Wu, T., and Jin, Z.-G., 2018. New insights into the metallogeny of MVT Zn-Pb deposits: A case study from the Nayongzhi in South China, using field data, fluid compositions, and in situ S-Pb isotopes. American Mineralogist: Journal of Earth and Planetary Materials. 103, 91-108.  10.2138/am-2018-6238.
Zhou, J., Huang, Z., and Yan, Z., 2013. The origin of the Maozu carbonate-hosted Pb–Zn deposit, southwest China: constrainedby C–O–S–Pb isotopic compositions and Sm–Nd isotopic age. Journal of Asian Earth Sciences. 73, 39-47.  10.1016/j.jseaes.2013.04.031.
Zhou, J. X., Huang, Z. L., Lv, Z. C., Zhu, X. K., Gao, J. G., Mirnejad, H., 2014. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb–Zn deposit, southwest China. Ore Geology Reviews. 63, 209-225.  10.1016/j.oregeorev.2014.05.012.