Document Type : Original Research Paper


Department of Geology, Faculty of Science, University of Isfahan, Isfahan, Iran


Based on field observation and petrographic evidence, by progress in metamorphic degrees, a wide variety of metabasites have formed following the metamorphism at amphibolite facies (metamorphism M1) in the east of Jandaq. Thermobarometry of plagioclase- amphibole pairs indicate temperature ranges were 642-692ºC  and 688-712 ºC for epidote amphibolites and garnet amphibolite, respectively, in a pressure range of 8 and 11 Kbar, correlating with transition from middle amphibolite to upper amphibolite facies. In addition to this metamorphic phase, petrographic signatures indicate further metamorphic phases concerning this region's geological phenomena. Based on brittle deformation in amphiboles, and epidote and quartz formation in their fractures, these rocks have undergone some degrees of retrograde metamorphism (<700 ºC; metamorphism M2) at greenschist to lower amphibolite facies. Rock foliation and mineral orientation, aggregate shape preferred orientation (ASPO) of titanite crystals along foliation, and syn-tectonic euhedral garnets indicate prograde metamorphism toward amphibolite-upper amphibolite facies (metamorphism M3). Finally, under greenschist facies condition, minerals such as chlorite and actinolite were formed in these rocks (metamorphism M4). The formation of chlorite and actinolite in the rims of the primary crystals shows that these rocks were finally affected by metamorphism at greenschist facies (M4 metamorphism).


Main Subjects

Abd El-Rahman, Y., Helmy, H. M., Shibata, T., Yoshikawa, M., Arai, S., and Tamura, A., 2012. Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole: Implications for the pluton origin and evolution of subduction-related magma, Lithos, 155, 410-425.
Armbuster, T., Bonazzi, P., Akasaka, M., Bermanex, V., Chopin, C., Giere, R., Heuss-Assbichler, S., Liebscher, A., Menchettic, S., Pan, Y., and Pasero, M., 2006. Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 18, 551-567.
Bagheri, S., and Stampfli, G. M., 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics, 451, 123–155.
Bagheri, S., 2007. The exotic Paleo-Tethys terrane in Central Iran: new geological data from Anarak, Jandaq and Posht-e-Badam areas: Faculty of Geosciences and Environment, University of Leusanne, Switzerland. Ph. D. Thesis, 208 pp.
Berra, F., Zanchi, A., Angiolini, L., Vachard, D., Vezzoli, G., Zanchetta, S., Bergomi, M., Javadi, H. R., and Kouhpeyma, M., 2017. The upper Palaeozoic Godar-e-Siah Complex of Jandaq: Evidence and significance of a North Palaeotethyan succession in Central Iran. Journal of Asian Earth Sciences 138, 272–290. https://doi/10.1016/j.jseaes.2017.02.006.
Best, M. G., 2003. Igneouse and metamorphic Petrology. Blackwell Publishing. 730p.
Blundy, J. D., and Holland, T. J. B., 1990. Calcic amphibole equilibria and a new amphibole plagioclase. https://doi/10.1007/BF00306444.
Brown, E. H., 1977. The crosstie content of Ca amphibole as a guide to pressure of metamorphism, Journal of Petrology 18, 376-416. https://doi/10.1093/petrology/18.1.53.
Bucher, K., and Grapes, R., 2011. Petrogenesis of Metamorphic Rocks, Springer Heidelberg Dordrecht London New York.
Butler, R. L., 1992. Ferromagnetic minerals, vol. 1. Blackwell Scientific Publication.
Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clays and Clay Minerals 23, 471-485.
Cathelineau, M., and Nivea, D., 1985. A chlorite solid solution geothermometer. The Los Azurfres (Mexico) geothermal system. Cont. Mineral Petrol. 91, 235–244. https://doi/10.1007/BF00413350.
Chen, G. Y., Sun, D. S., and Yin, H. A., 1987. Genetic Mineralogy and Prospecting Mineralogy, 1st ed.; University of Chongqing Publishing House: Chongqing, China, pp. 1–872. (In Chinese).[Google Scholar].
Deer, W. A., Howie, R. A., and Zussman, J., 1992. An introduction to the rock forming minerals, 2nd edition, London, Longman, London, 528 P.
Droop, G. T. R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431-435.
Ernst, W. G., and Liu, J., 1998. Experimental phase equilibrium study of Al-and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer, American Mineralogist 83, 952-969.
Féménias, O., Mercier, G.C., Nkono, C., Diot, H., Berza, T., Tatu, M., and Demaiffe, D., 2006. Calcic amphibole growth and compositions in calcalkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania), American Mineralogist 91, 73-81. https://doi/10.2138/am.2006.1869.
Fleet, M. E., and Barnett, R. L., 1978. A1IV/A1VI partitioning in calciferous amphiboles from the Frood mine, Sudbury, Ontario, Canadian Mineralogist 16, 527-532.
Frost, C. D., and Frost, B. R., 2014. Essentials of igneous and metamorphic petrology, Cambridge University Press, University of Cambridge. Geology 17, 837-841.
Girardeau, J., and Mevel, C., 1982. Amphibolitized sheared gabbros from ophiolites as indicators of the evolution of the oceanic crust: Bay of Islands, Newfoundland. Earth Planet Sci Lett 61, 151–165.
Hammarstrom, J. M., and Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer, American Mineralogist, 71, 1297-1313.
Helmy, H., Ahmed, A., El Mahallawi, M. M., and Ali, S. M., 2004. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Contributions to Mineralogy and Petrology, 146, 414-432.
Hey, M. H., 1954. A new review of the chlorites. Mineral Magazine, 30, 277-292.
Holland, T. J. B., and Blundy, J. D., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry, Contributions to Mineralogy and Petrology 116, 433-447. https://doi/10.1007/BF00310910.
Hollister, L. S., Grissom, G. E., Peters, E. K., Stowell, H. H., and Sisson, V. R., 1987. Confirmation of the empirical correlation of AI in hornblende with pressure of solidification of calc-alkaline plutons, American Mineralogist 72, 231-239.
Humphreys, M. C., Cooper, G. F., Zhang, J., Loewen, M., Kent, A. J., Macpherson, C. G., and Davidson, J. P., 2019. Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole, Contributions to Mineralogy and Petrology, 174, 9. https://doi/10.1007/s00410-018-1543-5.
James, H. L., 1955. Zones of regional metamorphism in the Precambrian of northern Michigan. Geol. Soc. Am. Bull., 66, 1455–1488.[1455:ZORMIT]2.0.CO;2.
Jamshidzaei, A., Torabi, G., Morishita, T., and Tamura, A., 2021. Eocene dike swarm and felsic stock in Central Iran: roles of metasomatized mantle wedge and Neo-Tethyan slab. Journal of Geodynamics, 145, 101844. doi: 10.1016/j.jog.2021.101844.
Johnson, M. C., and Rutherford, M. J., 1989. Experimentally calibration of the aluminum–in– hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks.Geology 17, 837-841.<0837:ECOTAI>2.3.CO;2.
Jowett, E. C., 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer-Geol. Assoc. Canada/Mineral. Assoc. Canada/Soc. Econ Geol Joint Annual Meeting (Toronto, May 27–29), Program with Abstracts 16, A62.
Kranidiotis, P., and MacLean, W. H., 1987. Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Econ. Geol., 82, 1898–1911.
Laird, J., Lanphere A., and Albee, A. L., 1984. Distribution of Ordovician and Devonian metamorphism in mafic and pelitic schists from Vermont, American Journal of Science 284, 376-416.
Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., and Krivovichev, V. G., 1997. Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist 82, 1019–1037.
Liou, J.G., Kuniyoshi, S., and Ito, K., 1974. Experimental studies of the phase relations between greenschist and amphibolite in a basaltic system. American Journal of Science 274, 613–632.
Liu, J., 1997. High pressure phase equilibria involving the amphibolite-eclogite transformation, unpublished doctoral dissertation, Stanford University.
Meurer W. P., and Claeson D. T., 2002. Evolution of crystallizing interstitial liquid in an arc- related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst.Journal of Petrology, 43, 607-629.
Okamoto, A., Toriumi, M., 2004. Optimalmixing properties of calcic and subcalcic amphiboles: application of Gibbs’ method to the Sanbagawa schists, SW Japan, Contributions to Mineralogy and Petrology 146, 529-545. https://doi/ 10.1007/s00410-003-0526-2.
Passchier, C. W., and Trouw, R. A. J., 2005. Microtectonis. Springer, Berlin Heidelberg, pp. 366.
Plyusnina, L. P., 1982. Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages, Contributions to Mineralogy and Petrology 80, 140-146. https://doi/10.1007/BF00374891.
Rasse, P., 1974. Al and Ti contents of hornblende, indicatores of pressure and temprature of regional. https://doi/10.1007/BF00383440.
Raymond, L. A., 2002. Petrology, The study of Igneouse, Sedimentary and Metamorphic Rocks. McGraw Hill.720p.
Romanko, E., Susov, M., Dvoryankin, A., Selivanov Tkachev, E. G., Krivyakin, B., Morozov, L., Silaev, V., Kiristaev, V., and Desyaterik. N., 1984. Geology and minerals of Jandaq area (Central Iran). Technoexport Report, TE/NO. 4, 171pp.
Samadi, R., Miller, N.R., Mirnejad, H., Harris, C., Kawabatae, H., Shirdashtzadeh, N., 2014a. Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran: A major, trace element, and oxygen isotope approach. 378-392.
Samadi, R., Mirnejad, H., Harris, C., Valizadeh, M.V., Gazel, E., 2014b. Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic significance, International Geology Review. 596-621.
Schmidt, M. W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental. https://doi/10.1007/BF00310745.
Shirdashtzadeh, N., Torabi, G., and Schaefer, B., 2018. A magmatic record of Neoproterozoic to Paleozoic convergence between Gondwana and Laurasia in the northwest margin of the Central-East Iranian Microcontinent. Journal of Asian Earth Sciences 166, 35–47.
Sial, A. N., Ferreira, V. P., Fallick, A. E., Jeronimo, M., and Cruz M. H ., 1998. Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil, Journal of South American Earth Science, 11, 457-471. https://doi/10.1016/S0895-9811(98)00034-0.
Susov, M., Dvoryankin, A., Selivanov, E., 1979. Geology and minerals of Jandaq area (Central Iran), Moscow, V/O “Technoexport”, Report No. 4, 171 p.
Tabatabaeimanesh, S. M., and Sharifi, M., 2011. Evaluation of thermodynamic condition (P-T) in formation of Jandaq metapelitic schists (North East of Isfahan province). Petrology, 2, 81-92. https://doi/10.1134/S0869591110030069.
Torabi, G., 2010. Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central-East Iranian microcontinent confining oceanic crust subduction. Island Arc, 19 (2), 277-291. https://doi/10.1111/j.1440-1738.2009.00705.x.
Vernon, R. H., 2018. A practical guide to rock microstructure. Cambridge university press, 182 pp.
Whitney, D. L., and Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185-187.https://doi/10.2138/am.2010.3371.
Winter, J. D., 2014. Principles of igneouse and metamorphic Petrology. Second Edition.Pearson new international edition, Edinburgh Gate, Harlow, Essex, CM20 2JE.745p.
Winter, J., 2010. Much of the present discussion is condensed from chapter 25: Metamorphic facies and metamorphism of mafic rocks. In: Principles of Igneous and Metamorphic Petrology, 2nd edn. John Winter. This chapter expands upon the subject matter presented here. Edition 3 in progress, 2020.
Wright, W. I., 1983. The composition and occurrence of garnets. American Mineralogist 23, 436–449.
Zanchetta, S., Zanchi, A., Berra, F., and Javadi, H. R., 2019. The Jandaq Complex in Central Iran: new insights on a Middle Jurassic orogenic event, 21st EGU General Assembly, EGU2019.
Zanchi, A., Malaspina, N., Zanchetta, S., Berra, F., Benciolini, L., Bergomi, M., Cavallo A., Javadi, H. R., and Kouhpeyma, M., 2015. The Cimmerian accretionary wedge of Anarak, Central Iran. Journal of Asian Earth Sciences, 102, 45–72.
Zanchi, A., Zanchetta, S., Berra, F., and H. R. Javadi., 2018. Cimmerian and pre-Cimmerian tectonics in the NW part of the Central-Eastern Iran Microcontinent: the Jandaq Complex Geophysical Research Abstracts Vol. 20, EGU2018-18060, EGU General Assembly 2018© Author (s). CC Attribution 4.0 license.
Zanchi, A., Zanchetta, S., Berra, F., Mattei, M., Javadi, H. R., Montemagni, C., 2021. Cenozoicn dextral shearing along the Arusan sector of the Great Kavir–Doruneh Fault System (Central Iran). Tectonics, 40, e2021TC006766. https://doi. org/10.1029/2021TC006766