Document Type : Original Research Paper


1 Department of Geology, Faculy of Sciences, University of Hormozgan, Bandar Abbas, Iran

2 Department of Geology, Faculy of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran


Dalfard granitoids are located in the south-east of Kerman province and in the margins mainly include quartz diorite. Quartz diorites contain main minerals plagioclase, amphibole and biotite  and this work reveals that the rocks in this area are I type granitoides and they belong to 
calc-alkaline magmatic series. The enrichment of LREE relative to HREE, high contents of LILE relative to HFSE and anomalies of Nb and Ti in spider diagrams show that the Dalfard quartzdiorites are formed in an arc setting environment. The CaO/(MgO+FeOt) and Al2O3/(MgO+FeOt) ratios 
(0.55 and 1.36 respectively) show that the parent magmas were formed by the partial melting of basaltic rocks of the lower crust and mantle fluids/melts also participated in their formation. Based on geochemical data such as La/Yb(N) and Th/Yb(N) ratios (4.4 and 6.5 respectively), these magmas are related to pre-plate collision environment and formed in the mature Volcanic arc setting at a depth of about 40 km at the supra subduction zone of the Neothetys oceanic lithosphere and then, they ascent to the higher levels of the crust and passed fractional crystallization.


Main Subjects

Altherr, R., Holl, A., Hegner, E., Langer, C., and Kreuzer, H., 2000. High-potassium, calc- alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50, 51–73.
Amidi, S.M., Emami, M.H., and Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of Iran and its geodynamic situation. Geologische Rundschau 73, 917–932.
Asadi,S., Moore, F., and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the Southeastern part of the central Iranian volcanoplutonic belt, Kerman region, Iran: a review. Earth Sci. Rev. 138, 25–46.
Atapour, H., and Aftabi, A., 2021. Petrogeochemical evolution of calcalkaline, shoshonitic and adakitic Atapour magmatism associated with Kerman Cenozoic arc porphyry copper mineralization, southeastern Iran: A review. 398-399. Lithos,  398–
Batchelor, R.A., and Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters: Chemical Geology, 48, 43-55.
Chapple, B.W., and White, A.J.R., 1992. I and S-type granites in the Lachlan Fold Belt, Trans. R.Soc. Edinb. Earth SCIENCE 83, 1-26.
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., and Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, V. 162– 163, P. 70–87.
Chung, S.L., Liu, D.Y., Ji, J.Q., Chu, M.F., Lee, H.Y.,Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q., and Zhang, Q., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31, 1021–1024. doi:10.1130/G19796.1.
Colombi, A., 1989. Metamorphism et geochimie des roches mafiques des Alpes oust- centrales (Geoprofil viege Domonossola- Locarno). Memoires de Geologie, Lausanne, France.
Conrad, G., Conrad, J., and Girod, M., 1977. Les formation continentals Tertiaries et Quaternaries du bloc du Lout, Iran: importance du plutonism et du volcanisme.
Mem. H. Ser. Soc. Geol. France 8, 53–75.
Danyushevsky, L.V., Falloon, T.J., Crawford, A.J., Tetroeva, S.A., Leslie, R.L.,  and Verbeeten, A., 2008. High-Mg adakites from Kadavu Island Group, Fiji, southwest Pacific: evidence for the mantle origin of adakite parental melts. Geology 36, 499–502. doi:10.1130/G24349A.1.
Dargahi, S., Arvin, M., Pan, Y., and Babaei, A., 2010. Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian– Eurasian continental collision. Lithos 115(1-4): 190-204.
Defant, M.J., and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 .
Dimitrijevic, M. D., 1973- Sarduiyeh geological map. Iran Geological Survey.
Ducea, M.N., Saleeby, J. B., and Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences 43, 10-1.
Duchesne, J.C., Berza, I.T., Liegeois, J.P., and  Auwera, J.V., 1998. Shoshonitic liquid line of descent from diorite to granite: the late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos 45, 281–303. doi:10.1016/S0024-4937(98)00036-X.
Eby, G.N., Woolley, A.R., Din, V., and  Platt, G., 1998. Geochemistry and petrogenesis of nepheline syenite: Kasungu–Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology 39, 1405–1424.
Ghasemi, A., and Talbot, C.J., 2006. A new scenario for the SanandajSirjan zone (Iran). Journal of Asian Earth Sciences 26, 683– 693.
Gill, J. B., 1974. Role of under trust oceanic crust in the genesis of a Fijian calc-alcaline suite. Contr. Mineralogy and Petrology. 43, 29-45. doi:10.1007/BF00384650.
Goss, A.R., and  Kay, S.M., 2009. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28 S, ~68 W). Earth Planet Sci. Lett. 279, 97–109.
Hammarstrom, J. M., and Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist 71(11-12): 1297-1313.
Harker, A., 1909. The naturalhistory of igneous rocks. Methuen, London.
Harris, N.B.W., Pearce, J.A.G., and Tindle, A.G., 1986, Geochemical characteristics of collision-zone magmatism, Geological Society, London, Special Publications ,19: 67-81. doi: 10.1144/GSL.SP.1986.019.01.04 p67-81.
Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of Iran 
(Shahre Babak area, Kerman Province). Ph.D. thesis, Univ of California, Los Angeles, 204p.
Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H., and Sisson, V. B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72(3-4): 231-239.
Hosseini, M.H., Ghaderi, M., Alirezaei, S., and Weidong, S., 2017. Geological characteristics and geochronology of the Takht-e-Gonbad copper deposit, SE Iran: A variant of porphyry type deposits, Ore Geology Reviews, Volume 86, June 2017, Pages 440-458,
Jiang, Y.H., Jiang, S.Y., Ling, H.F., and  Dai, B.Z., 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth and Planetary Science Letters 241, 617–633. doi:10.1016/j.epsl.2005.11.023.
Johnson, M. C., and Rutherford, M. J., 1989. Experimental calibration of the aluminum-in-hornblende. 
Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J. M., Gray, C.M., and Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315, 980–983.
Kharbish, S. H., 2010. Geochimistry and magmatic setting of Wadi EL-Markh island-arc gabbro-diorite, Central Eastern Desert, Egypt. Cheie der Erdo. 70, 257-266.
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., and Keller, J., 2002. Igneous Rocks: A Classification and Glossary of Terms; Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.
Leak, B.E., Woolley, A.R., Birch, W.C., Gilbert, M.C., Grice, J.D., Hawthone, F.C., Kato, A., Kish, H.J., Krivovicher, V.G., Linthout, K., Laird, J., and  Mandario, J., 1997. Nomenclature of amphiboles», Report of the subcommitte on amphiboles of International Mineralogical Assocciation. Mineralogical Magazine, Volume 61 , Issue 405, pp. 295 - 310.
Macpherson, C.G., Dreher, S.T., and Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243, 581–593.
Maniar, P.D., and Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101, 635–643.; 2.
Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753–756 .;2.
Muller, D., and  Groves,  D.I., 1994. Potassic igneous rocks and associated gold-copper mineralization, Spring Verlage, 241p. 
Muller, D., and Groves, D. I., 1997. Pottassic igneous and associated gold-copper mineralization. Springer-Verlag, 241pp.
Nazarinia, A., Mortazavi, M.,  Arvin, M., Hu, R., Zhao, Ch., and Poosti, M., 2020. U-Pb zircon dating, Sr-Nd isotope and petrogenesis of Sarduiyeh granitoid in SE of the UDMA, Iran: implication for the source origin and magmatic evolution. International Geology Review. 62, 13-14.
Peccerillo, A., and Taylor, S. R., 1976. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamoun area, northern Turkey. Contr. Mineralogy and  Petrology. 58, 63-81. org/10.1007/BF00384745.
Pertermann, M., Hirschmann, M.M., Hametner, K., Günther, D., and Schmidt, M.W., 2004. Experimental determination of trace element partitioning between garnet and silica- rich liquid during anhydrous partial melting of MORB-like eclogite. G-cubed 5, 297–391.
Rapp, R.P., Shimizu, N., and Norman, M.D., 1999. Applegate, reaction between slab-derived melt and peridotite in the mantle wedge: experimental constrains at 38 Gpa. Chem. Geol. 160, 335–356. dio:10.1016/S0009-2541(99)00106-0.
Rollinson, H. R., 1996. Using Geochemical Data: Evaluation, Presentation, interpretation. Longman. Singapore, 325p.
Rudnick, R.L.,  and Gao, S., 2003. Composition of the continental crust. In: Holland, H.D., Turekian, K.K. (Eds.), The Crust. Treatise on Geochemistry, 3. Elsevier–Pergamon, Oxford, pp. 1–64.
Sabzehei, M., 1994. Geological Quadrangle Map of Iran, No. 12, Hajiabad, 1:250 000, First compilation b y Berberian, M. and Final compilation and revision by Sabzehei, M., Geological Survey of Iran.
Schmidt, M. W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110(2-3): 304-310. doi:10.1007/BF00310745.
Shafiei, B., Haschke, M., and Shahabpour, J., 2009. Recycling of orogenic arc triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, Southeastern Iran. Mineral. Deposita 44, 265–283.
Shahabpour, J., 2007. Island-arc affinity of the Central Iranian volcanic belt. Journal of Asian Earth Sciences 30(5): 652-665. 
doi: 10.1016/j.jseaes.2020.104555.
Shand, S. J., 1943. Eruptive rocks: their genesis, composition, classification, and their relation to ore deposits with a chaper on meteorites.
Sisson, T.W., Ratajeski, K., Hankins, W.B., and Glazner, A.F., 2005. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 148, 635–661. doi: 10.1007/s00410-004-0632-9.
Stocklin, J., 1974. Possible ancient continental margins i n Iran. In: Burk, C.A., Drake, C.L. (Eds.), The Geology of Continental Margins. Springer-Verlag, Berlin, pp. 873–887.
Streck, M.J., Leeman,W.P.,  and Chesley, J., 2007. High-magnesian andesite fromMount Shasta: a product of magma mixing and contamination, not a primitive mantlemelt. Geology35, 351–354. doi: 10.1130/G24099C.1.
Streckeisen, A.L., 1976. To each plutonic rock its proper name. Earth Sci. Rev. 12, 1–33.
Sun, S. S., and McDonough, W. F., 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D., Norry, M. J. (Eds.), Magmatism in the Ocean Basins. Geological Society Special Publication, 42, 313– 345.
Weinberg, R.F., 2006. Melt segregation structures in granitic pluton. Geology 34, 305–308.
Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 95, 407–419.
Winchester, J. A.,  and Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20,