Document Type : Original Research Paper

Authors

1 Department of Geology, Faculty of Science, Golestan University, Gorgan, Iran

2 Road, Housing and Urban Development Research Center, Tehran, Iran

Abstract

The 2017 Ezgeleh earthquake (Mw: 7.3), which occurred in the northwest of the Zagros, was followed by many aftershocks. The histogram of the monthly rate of aftershocks shows that, except for the first few months, the aftershock sequence did not follow the Omori law. Therefore, it is necessary to use more complex methods to investigate the aftershock sequence. In this research, the temporal multifractal method was used. The obtained results show that the temporal pattern of aftershocks has two short and long-scaling ranges. It seems that short and long ranges are related to the distribution of aftershocks within smaller clusters and the pattern of clusters in the aftershock sequence, respectively. These result showed that the pattern in the longer range is more heterogeneous than the shorter one. On the other hand, by removing the smaller aftershocks, the heterogeneity increases. It seems that the occurrence of several more significant aftershocks with a magnitude of more than 5 has caused an increase in the heterogeneity of the temporal pattern of the aftershock sequence. The results also show that the degree of inhomogeneity of the occurrence time of aftershocks is related to the spatial distribution pattern of aftershocks.

Keywords

Main Subjects

Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103(8), 983-992.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211-238.‏
Ambraseys, N. N., and Melville, C. P., 1982. A History of Persian Earthquakes. Cambridge University Press, 219 p.
Badii, R., and Broggi, G., 1988. Measurement of the Dimension Spectrum f(rx.): Fixed-mass Approach, Phys. Lett. Al31, 339-343.
Berberian, M., 1995. Master Blind” Thrust Faults Hidden Under the Zagros Folds: Active Basement Tectonics and Surface Morphotectonics. Tectonophysics, Vol. 241, p: 193-224. https://doi.org/10.1016/0040-1951(94)00185-C.
Berberian, M., and King, G.C.P., 1981. Towards a paleo-geography and tectonic evolution of Iran: Canadian Journal of Earth Sciences, v, 18, p, 210–265. http://dx.doi.org/10.1139/e81-019.
Chen, K., Xu, W., Mai, P. M., Gao, H., Zhang, L., and Ding, X., 2018. The 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran: A compact blind shallow-dipping thrust event in the mountain front fault basement. Tectonophysics, 747, 108-114.‏ https://doi.org/10.1016/j.tecto.2018.09.015.
Chhabra, A., and Jensen, R.V., 1989. Direct determination of the f(α) singularity spectrum. Phys Rev Lett; 62(12):1327–30. https://doi.org/10.1103/physrevlett.62.1327.
De Freitas, D. B., Nepomuceno, M. M. F., de Souza, M. G., Leão, I. C., Chagas, M. D., Costa, A. D., Canto Martins, B. L., and De Medeiros, J. R., 2017. New suns in the cosmos. IV. The multifractal nature of stellar magnetic activity in kepler cool stars. The Astrophysical Journal., 843(2), 103.
Enescu, B., Ito, K., Radulian, M., Popescu, M., and Bazacliu, O., 2005. Multifractal and chaotic analysis of  Vrancea (Romania) intermediate-depth earthquakes: investigation of the temporal distribution of events. Pure Appl, Geophys. 162, 249–271.
Falcon, N.L., 1974. Southern Iran: Zagros Mountains. In: SPENCER, A. (ed.) Mesozoic–Cenozoic Orogenic Belts. Geological Society, London, Special Publications, 4, 199-211.
Gardner, J., and Knopoff, L., 1974. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian. Bull. Seismol. Soc. Am, 64(5), 1363-1367.
Grassberger, P., 1983. Generalized dimensions of strange attractors. Physics LettersA, 97(6), 227-230.‏
Grassberger, P., and Procaccia, I., 1983a. Characterizations of stranger attractors, Phys, Rev, Lett, 50, 346–349. https://doi.org/10.1103/PhysRevLett.50.346.
Grassberger, P., and Procaccia, I., 1983b. Measuring the strangeness of strange attractors. Physica D 9, 189-208. https://doi.org/10.1016/0167-2789(83)90298-1.
Grassberger, P., Badii, R., and Pohti, A., 1988. Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors, Stat, Phys, 51 (l/2), 135–178. https://doi.org/10.1007/BF01015324.
Greenside, H. S., Wolf, A., Swift, J., and Pignataro, T., 1982. Impracticality of a Box counting Algorithm for Calculating the Dimensionality of Strange Attractors, Phys. Rev. A25, 3453-3459. https://doi.org/10.1103/PhysRevA.25.3453.
Gutenberg, B., and Richter, CF., 1944. Frequency of earthquakes in California. Bull Seism Soc Am, 34:185–8.
Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., and Shraiman, B.I., 1986. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151. https://doi.org/10.1103/physreva.33.1141.
Harikrishnan, KP., Misra, R., Ambika, G., and Amritkar, RE., 2009. Computing the multifractal spectrum from time series: an algorithmic approach. Chaos; 19:043129. https://doi.org/10.1063/1.3273187.
Hentschel, H. G. E., and Procaccia, I., 1983. The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors, Physica 8D, 435-444. https://doi.org/10.1016/0167-2789(83)90235-X.
Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M. R., Feghhi, K., and Solaymani, S., 2003. Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results, Annals of Geophysics, 46(5).‏ https://doi.org/10.4401/ag-3461.
Hirabayashi, T., Ito, K., and Yoshii, T., 1992. Multifractal analysis of earthquakes. Pure Appl. Geophys. 138 (4), 591–610.
Hirata, T., and Imoto, M., 1991. Multifractal analysis of spatial distributions of microearthquake in the Kanto Region. Gophys, J, Int, 107, 155–162. https://doi.org/10.1111/j.1365-246X.1991.tb01163.x.
Huang, Z., Zhang, G., Shan, X., Gong, W., Zhang, Y., and Li, Y., 2019. Co-seismic deformation and fault slip model of the 2017 Mw 7.3 Darbandikhan, Iran–Iraq earthquake inferred from D-InSAR measurements. Remote Sensing, 11(21), 2521.‏ https://doi.org/10.3390/rs11212521.
IRSC, Iranian Seismological Center, http://irsc.ut.ac.ir.
Jackson, J., and Mckenzie, D.P., 1984. Active tectonics of Alpine-Himalayan belt between western Turkey and Pakistan, Geophys, Journ, Roy, Astr, Soc,77, 185-264.
Jensen, M. H., Kadanoff, L. P., Libchaber, A., Procaccia, 1., and Stavans, J., 1985. Global Universality at the Onset of Chaos: Results of a Forced Rayleigh-Benard Experiment, Phys, Rev, Lett 55,2798-2801. https://doi.org/10.1103/PhysRevLett.55.2798.
Karimiparidari, S., Zaré, M., Memarian, H., and Kijko, A., 2013. Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17(3), 897-911. https://doi:10.1007/s10950-013-9360-9.
Kuang, J., Ge, L., Metternicht, G. I., Ng, A. H. M., Wang, H., Zare, M., and Kamranzad, F., 2019. Coseismic deformation and source model of the 12 November 2017 MW 7.3 Kermanshah Earthquake (Iran–Iraq border) investigated through DInSAR measurements. International journal of remote sensing, 40(2), 532-554.‏ https://doi.org/10.1080/01431161.2018.1514542.
Lavasani, M., and Shabani, E., 2020. Temporal properties of aftershock sequences of large earthquakes in Iran-Analysis of primary and secondary aftershocks of the Ezgeleh sequence. Annals of Geophysics, 63(6). https://doi:10.4401/ag-8338.
Mandelbrot, B.B., 1989. Multifractal measures: especially for the geophysicist. Fractals in geophysics, 5–42.
Mohammadi, F., and Moradi, A., 2019. The Double difference relocation of aftershock sequence of 2017 ezgeleh earthquake, 8th International Conference on Seismology and Earthquake Engineering .
Motiei, H., 1994. Stratigraphy of Zagros, report, Geol. Geological Survey of Iran, Tehran, (in Persian).
Mousavi, S.M., Haghshenas, E., Ashayeri, E., Tajik, V., and Memarian, P., and Zare, M. A., 2017.  Primary report of 12 Novamber 2017 Sarpol-e- Zahab earthquake of Kermanshah province, International Institute of Earthquake Engineering and Seismology, (in Persian).
Nanjo, K., and Nagahama, H., 2004. Fractal properties of spatial distributions of aftershocks and active faults. Chaos, Solitons and Fractals, 19(2), 387-397.‏ https://doi.org/10.1016/S0960-0779(03)00051-1.
Nur, A., and Booker, J. R., 1972. Aftershocks caused by pore fluid flow?. Science, 175(4024), 885-887.
Omori, F., 1894. On the aftershocks of earthquakes, J. Coll. Sci., Tokyo Imp. 7, 111-200.
Ommi, S., 2016. Aftershock patterns in the seismic regime of Iran. Ph. D. thesis, International Institute of Earthquake Engineering and Seismology, 187, (in Persian).
Rahimi-Majd, M., Shirzad, T., and Najafi, M. N., 2022. A self-organized critical model and multifractal analysis for earthquakes in Central Alborz, Iran. Scientific Reports, 12(1), 1-15.‏ http://dx.doi.org/10.1038/s41598-022-12362-7.
Sepehr, M., and Cosgrove, J.W., 2004. Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum Geology, 21, 829–843. https://doi.org/10.1016/j.marpetgeo.2003.07.006.
Setudehnia, A., 1978. The Mesozoic Sequence in South-West Iran and adjacent areas, J. Petroleum Geology, 1(1): 3-42. https://doi.org/10.1111/j.1747-5457.1978.tb00599.x.
Setyawan, B., and Sapiie, B., 2019. Correlation between the fractal of aftershock spatial distribution and active fault on Sumatra. Natural Hazards and Earth System Sciences Discussions, 1-11.
Sherkati, S, .and Letouzey, J., 2004. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful embayment), Iran. Marine and petroleum geology 21, 535-554. https://doi.org/10.1016/j.marpetgeo.2004.01.007.
Shimizu, Y., Thurner, S.,and Ehrenberger, K., 2002. Multifractal spectra as a measure of complexity in human posture. Fractals 10, 103–116.
Stiphout, T., Zhuang, J., and Marsan, D., 2012. Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis. https://doi: 10.5078/corssa-52382934.
Stöcklin, J. 1968. Structural history and tectonics of Iran: A review: The American Association of Petroleum Geologists Bulletin, v. 52, p. 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D.
Tatar, M., Ghaemmaghamian, M.R., Yaminifard, F., Hesamiazar, Kh., Ansari, A., and Firouzi, E., 2017. Report of 12 Novamber 2017 Sarpol-e- Zahab earthquake of Kermanshah province, International Institute of Earthquake Engineering and Seismology,(in Persian).
Telesca, L., and Lapenna, V., 2006. Measuring multifractality in seismic sequences. Tectonophysics, 423(1-4), 115-123.‏ https://doi.org/10.1016/j.tecto.2006.03.023.
Tiwari, R. K., and Paudyal., H., 2022. Gorkha earthquake (M W 7.8) and aftershock sequence: A fractal approach. Earthquake Science, 35(3), 193-204.‏ https://doi.org/10.1016/j.eqs.2022.06.001.
Utsu, T., 1961. A statistical study on the occurrence of aftershocks, Geophys. Mag. 30, 521-605.
Vita-Finzi, C., 2001. Neotectonics at the Arabian plate margins. Journal of Structural Geology 23, 521-530. http://dx.doi.org/10.1016/S0191-8141(00)00117-6.
Walker, R. T., Andalibi, M. J., Gheitanchi, M. R., Jackson, J. A., Karegar, S., and Priestley, K., 2005. Seismological and field observations from the 1990 November 6 Furg (Hormozgan) earthquake: a rare case of surface rupture in the Zagros mountains of Iran, Geophysical Journal International., 163(2), 567-579.‏ https://doi.org/10.1111/j.1365-246X.2005.02731.x.
Wang, J. H., Chen, K. C., Chen, K. C., and Kim, K. H., 2022. Multifractal measures of the 2021 earthquake swarm in Hualien, Taiwan, Terrestrial., Atmospheric and Oceanic Sciences, 33(1), 1-9. https://doi.org/10.1007/s44195-022-00011-5.
Wawrzaszek, A., and Macek, W. M., 2010. Observation of the multifractal spectrum in solar wind turbulence by Ulysses at high latitudes. Journal of Geophysical Research: Space Physics, 115(A7).‏ https://doi.org/10.1029/2009JA015176.
Wiemer, S., 2001. A software package to analyze seismicity: ZMAP, Seis. Res. Lett., 72, 2, 374-383.
Wiemer, S., and R.F. Zuniga, 1994. ZMAP - A software package to analyse seismicity (abstract), EOS, Trans. AGU, 75(43), Fall Meet. Suppl., 456.
Yang, Ch., Han, B., Zhao, Ch., Du, J., Zhang, D., and Zhu, S., 2019. Co- and post-seismic Deformation Mechanisms of the MW 7.3 Iran Earthquake (2017) Revealed by Sentinel-1 InSAR Observations, Remote Sensing, 11(4), 418. https://doi.org/10.3390/rs11040418.
Zamani, A., and Agh-Atabai, M., 2009. Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach. Journ. Geodynamics, 47, 271-279. https://doi.org/10.1016/j.jog.2009.01.003.
Zare, M., Kamranzad, F., Parcharidis, I., and Tsironi, V. 2017. Preliminary report of Mw7. 3 Sarpol-e Zahab, Iran earthquake on November 12, 2017, EMSC report, 1(10).‏