Document Type : Original Research Paper

Authors

1 School of Geology, College of Science, University of Tehran, Tehran, Iran

2 Department of Physics and Earth Sciences, University of the Ryukyus, Okinawa, Japan

Abstract

Anomaly 21A, as a part of Bafq iron-apatite ore metallogenic district, is located in Central Iran, and encompasses wide spectrume of igneous, sedimentary and metamorphic rocks. The igneous rocks that show narrow geochemical variations and dominantly plot in the monzonite to monzodiorite fields, are plotted in the calc-alkaline and high-K calc-alkaline affinities. Geochemical data are characterized by enrichment LILE and LREE as compare to HFSE and HREE, respectively, and depletions in Nb-Ta-Ti imply the mantle-derived melts modified by subduction components. The isotopic signatures of Anomaly 21A samples, e.g., (87Sr/86Sr)i, εNd(t)=, imply the dominant mantle signature. Their initial Pb isotopic composition of study rocks are 18.87 to 20.32 for (206Pb/204Pb), 15.72 to 15.84 for (207Pb/204Pb), and 40.74 to 42.32 for (208Pb/204Pb). The isotopic modellings show less than 4% incorporation of melt-derived subducted sediment into the mantle wedge or variable degrees of contamination by upper continental crust. We suggest partial melting of a sub-arc mantle melt that has been metasomatized by slab-derived sediments and interacted with continental crust en-route the shallower surface as the premise of the geodynamic of Central Iran. 

Keywords

Main Subjects

Azizi, H., and Wattam, S.A., 2022. Does Neoproterozoic-Early Paleozoic (570–530 Ma) basement of Iran belong to the Cadomian Orogeny? Precambrian Research, 368, 106474. https://doi.org/10.1016/j.precamres.2021.106474.
Azizi, H., Chung, S.L., Tanaka, T., and Asahara, Y., 2011. Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: A significant revision of the formation age and magma source. Precambrian Res. 185 (3-4), 87–94. https://doi.org/10.1016/j.precamres.2010.12.004.
Babazadeh, S., D’Antonio, M., Cottle, J.M., Ghalamghash, J., Raeisi, D., and An, Y., 2021. Constraints from geochemistry, zircon U-Pb geochronology and Hf-Nd isotopic compositions on the origin of Cenozoic volcanic rocks from central Urumieh-Dokhtar magmatic arc, Iran. Gondwana Research, 90, 27–46.
Babazadeh, S., Ghorbani, M.R., Bröcker, M., D’Antonio, M., Cottle, J., Gebbing, T., Mazzeo, F.C., and Ahmadi, P., 2017. Late Oligocene-Miocene mantle upwelling and interaction inferred from mantle signatures in gabbroic to granitic rocks from the Urumieh-Dokhtar magmatic arc, south Ardestan, Iran. International Geology Review, 59, 1590–1608. 
Babazadeh, S., Ghorbani, M.R., Cottle, J.M., and Bröcker M., 2019. Multi-stage tectono-magmatic evolution of the central Urumieh-Dokhtar magmatic arc, south Ardestan, Iran: Insights from zircon geochronology and geochemistry. Geological Journal, 54 (4), 2447–247.
Babazadeh, S., Raeisi, D., D’Antonio, M., Long, L.E., Cottle, J.M., and Modabberi, S., 2022. Petrogenesis of Miocene igneous rocks in the Tafresh area (central Urumieh-Dokhtar magmatic arc, Iran): Insights into mantle sources and geodynamic processes. Geological Journal. https://doi.org/10.1002/gj.4451.
Bagherzadeh, R.M., Karimpour, M.H., Farmer, G.L., Stern, C.R., Santos, J.F., Rahimi, B., and Heidarian Shahri, M.R., 2015. U-Pb zircon geochronology, petrochemical and Sr–Nd isotopic characteristic of Late Neoproterozoic granitoid of the Bornaward Complex (Bardaskan-NE Iran). J. Asian Earth Sci. 111, 54–71. https://doi.org/10.1016/j.jseaes.2015.05.019.
Baier, J., Audétat, A., and Keppler, H., 2008. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters 267, 290–300.
Balaghi Einalou, M., Sadeghian, M., Zhai, M., Ghasemi, H., and Mohajjel, M., 2014. Zircon U-Pb ages, Hf isotopes and geochemistry of the schists, gneisses and granites in Delbar Metamorphic-Igneous Complex, SE of Shahrood (Iran): Implications for Neoproterozoic geodynamic evolutions of Central Iran. J. Asian Earth Sci. 92, 92–124. https://doi.org/10.1016/j.jseaes.2014.06.011.
Beyarslan, M., Lın, Y.C., Bing¨ol, A.F., and Chung, S.L., 2016. Zircon U-Pb age and geochemical constraints on the origin and tectonic implication of Cadomian (Ediacaran-Early Cambrian) magmatism in SE Turkey. J. Asian Earth Sci. 130, 223–238. https://doi.org/10.1016/j.jseaes.2016.08.006.
Castillo, P.R., 2008. Origin of the adakite-high-Nb basalt association and its implications for post-subduction magmatism in Baja California, Mexico. Geological Society of America bulletin 120, 451-462.
Chaharlang, R., and Ghorbani, M.R., 2020. A hidden crust beneath the central Urumieh-Dokhtar Magmatic Arc revealed by inherited zircon ages, Tafresh, Iran: Geological Journal, 55 (5), 3770–3781. doi: https://doi.org/10.1002/gj.3631.
Chappell, B. W., Bryant, C. J., Wyborand, D., White, A.J.R. and Williams, I. S. 1998. High- and low-temperature I-type granites. Resource Geology, 48, 225–236.
Daneshvar, N., Maanijou, M., Azizi, H., and Asahara, Y., 2019. Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran. J. Geodyn. 132, 101669. https://doi.org/10.1016/j.jog.2019.101669.
Davoudian, A.R., Genser, J., Neubauer, F., and Shabanian, N., 2016. 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogen. Gondwana Res. 37, 216–240. https://doi.org/10.1016/j.gr.2016.05.013.
Derakhshi, M., Ghasemi, H., and Miao, L., 2017. Geochemistry and petrogenesis of Soltan Maidan basalts (E Alborz,Iran): Implications for asthenosphere-lithosphere interaction andrifting along the N margin of Gondwana. Chemie der Erde 77, 131–145.
Drake, M.J., and Weill, D.F., 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid - experimental Study. Geochimica et Cosmochim. Acta 39, 689-712.
Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–644.
Haghipour, A., and Pelissier, G., 1977. Geology of the Saghand Sector. In: Haghipour A, Valeh N, Pelissier G, Davoudzadeh M (Eds.), Explanatory Text of the Ardekan Quadrangle Map, GSI H8. p. 10–68.
Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K., and Walker, J.D., 2008. U-Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics 451 (1-4), 71–96. https://doi.org/10.1016/j.tecto.2007.11.062.
Hawkesworth, C., Kelley, S., Turner, S., Le Roex, A., and Storey, B. 1999. Mantle processes during Gondwana break-up and dispersal. Journal of African Earth Sciences, 28(1), 239–261.
Honarmand, M., Xiao, W., Nabatian, G., Blades, M.L., dos Santos, M.C., Collins, A.S., and Ao, S., 2018- Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and Sr-Nd-Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: Implications for Ediacaran active continental margin along the northern Gondwana and constraints on the late Oligocene crustal anatexis. Gondwana Research 57, 48–76. https://doi.org/10.1016/j.gr.2017.12.009.
Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A., Fakhari, M.D., Zamanzadeh, S.M., and Grove, M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics 451 (1-4), 97–122. https://doi.org/10.1016/j.tecto.2007.11.063.
Hosseini, S.H., Sadeghian, M., Zhai, M., and Ghasemi, H., 2015. Petrology, geochemistry and zircon U-Pb dating of Band-e-Hezarchah metabasites (NE Iran): An evidence for back-arc magmatism along the northern active margin of Gondwana. Chemie der Erde - Geochemistry 75 (2), 207–218. https://doi.org/10.1016/j.chemer.2015.02.002.
Huang, K.F., Blusztajn, J., Oppo, D.W., Curry, W.B., and Peucker-Ehrenbrink, B., 2012- High-precision and accurate determination of neodymium isotopic compositions at nanogram levels in natural materials by MC-ICP-MS. J. Anal. At. Spectrom. 27, 1560–1567. https://doi.org/10.1039/C2JA30123G.
Jafari, S.R., Sepahi, A., and Osanai, Y., 2020. LA-ICP-MS zircon U-Pb geochronology on migmatites from the Boroujerd region, Sanandaj-Sirjan zone, Zagros Orogen, Iran: provenance analysis and metamorphic age. Geopersia, 10, 367–380. 10.22059/ GEOPE.2020.288587.648501.
Jiang, N., Liu, Y.S., Zhou, W.G., Yang, J.H., and Zhang, S.Q., 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim. Cosmochim. Acta 71, 2591–2608. https://doi.org/10.1016/j.gca.2007.02.018Get rights and content.
Karimpour, M.H., Stern, C.R., Farmer, L., Saadat, S., and Malekzadeh Shafaroudi, A., 2011. Review of age, Rb–Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran. Journal of Geopersia 1 (1), 19–36. https://doi.org/10.22059/jgeope.2011.22162.
Kay, S.M., Ramos, V.A., and Marquez, M., 1993. Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America. The Journal of Geology 101, 703–714. 
Kirchenbaur, M., Münker, C., Schuth, S., Garbe-Schonberg, D., and Marchev, P., 2012. Tectonomagmatic constraints on the sources of Eastern Mediterranean K-rich lavas. Journal of Petrology, 53, 27-65.
Linnemann, U., Pereira, F., Jeffries, T.E., Drost, K., and Gerdes, A., 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs): Tectonophysics, 461, p. 21–43.
Middlemost, E.A.K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. 
Moghadam, H., Griffin, W.L., Li, X.H., Santos, J.F., Karsli, O., Stern, R.J., Ghorbani, G., Gain, S., Murphy, R., and O’Reilly, S.Y., 2017. Crustal evolution of NW Iran: Cadomian Arcs, Archean fragments and the Cenozoic magmatic flare-up. J. Petrol. 58, 2143–2190. https://doi.org/10.1093/petrology/egy005.
Morata, D., Oliva, C., de la Cruz, R., and Suarez, M., 2005. The Bandurrias gabbro; late Oligocene alkaline magmatism in the Patagonian cordillera. Journal of South American Earth Sciences 18, 147-162.
Murphy, J.B., Pisarevsky, S.A., Nance, R.D., and Keppie, J.D., 2004. Neoproterozoic-Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia- Gondwana connections. Int. J. Earth Sci. 93 (5), 659–682.
Nance, R.D., Murphy, J.B., Strachan, R.A., Keppie, J.D., Gutiérrez-Alonzo, G., Fernández- Suárez, J., Quésada, C., Linnemann, U., D’Lemos, R., and Pisarevsky, S.A., 2008. Neoproterozoic–early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. Special Publications, 297. Geological Society of London, pp. 345–383.
Nayebi, N., Esmaeily, D., Chew., D.M., Lehmann, L., and Modabberi, S., 2021. Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit. Ore Geology Reviews 132, 104054.
Nayebi, N., Esmaeily, D., Modabberi, S., Shinjo, R, Deevsalar, R., and Lehmann, B., 2022. Geochemistry and petrogenesis of intrusive rocks of Chadormalu deposit; an implication on whole-rock geochemistry and Sr-Nd-Pb isotopes. Scientific Quarterly Journal of Geosciences (In Press). 10.22071/GSJ.2022.301762.1930.
Nouri, F., Davoudian, A.R., Shabanian, N., Allen, M.B., Asahara, Y., Azizi, H., Anma, R., Khodami, M., and Tsuboi, M., 2022. Tectonic transition from Ediacaran continental arc to early Cambrian rift in the NE Ardakan region, central Iran: Constraints from geochronology and geochemistry of magmatic rocks. Journal of Asian Earth Sciences, 224, 105011. https://doi.org/10.1016/j.jseaes.2021.105011.
Orejana, D., Merino Martínez, E., Villaseca, C., and Andersen, T., 2015. Ediacaran–Cambrian paleogeography and geodynamic setting of the Central Iberian Zone: Constraints from coupled U–Pb–Hf isotopes of detrital zircons. Precambrian Res. 261, 234–251.
Pearce, J. A, Harris, N. B. W., and Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4), 956–983.
Pearce, J.A., and Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Science Letters, 23, 251-285.
Pereira, M. F., Chichorro, M., Sola´, A. R., Silva, J. B., Sa´nchez Garcı´a, T., and Bellido, F., 2011. Tracing the Cadomian magmatism with detrital/inherited zircon ages by in-situ U-Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif): Lithos, v. 123 (1–4), p. 204–217.
Pin, C., Briot, D., Bassin. C., and Poitrasson., F., 1994- Concomitant separation of strontium and sumarium neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta 298, 209–217. https://doi.org/10.1016/0003-2670(94)00274-6.
Plank, T., 2014. The chemical composition of subducting sediments. Treatise on Geochemistry: Second Edition 2nd ed Elsevier Ltd.
Ramezani, J., and Tucker, R.D., 2003- The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303, 622–665. http://dx.doi.org/10.2475/ajs.303.7.622.
Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, England.
Rudnick, R.L., and Gao, S., 2003. Composition of the continental crust. In The Crust (3) (ed. R. L. Rudnick), 1-64. https://doi.org/10.1016/0016-7037(95)00038-2.
Scher, H. D., and Delaney, M. L., 2010- Nd isotope composition of fossil fish teeth of ODP Hole 119-738B. PANGAEA, paleoceanography. Chemical Geology, 269(3-4), 329-338, https://doi.org/10.1594/PANGAEA.780523.
Sepidbar, F., Moghadama, H.S., Li, C., Stern, R.J., Jiantang, P., and Vesali, Y., 2020. Cadomian Magmatic Rocks from Zarand (SE Iran) Formed in a Retro-Arc Basin. Lithos 366–367. 105569. https://doi.org/10.1016/j.lithos.2020.105569.
Shabanian, N., Davoudian, A.R., Dong, Y., and Liu, X., 2018. U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan zone of western Iran. Precambrian Res. 306, 41–60. https://doi.org/10.1016/j.precamres.2017.12.037.
Shahzeidi, M., Moayyed, M., Murata, M., Yui, T.-F., Arai, S., Chen, F., Pirnia, T., and Ahmadian, J., 2017. Late Ediacaran crustal thickening in Iran: Geochemical and isotopic constraints from the ~550 Ma Mishu granitoids (northwest Iran). Int. Geol. Rev. 59 (7), 793–811. https://doi.org/10.1080/00206814.2016.1198728.
Shakerardakani, F., Neubauer, F., Masoudi, F., Mehrabi, B., Liu, X., Dong, Y., Mohajjel, M., Monfaredi, B., and Friedl, G., 2015. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser ablation ICP–MS zircon ages and geochemistry. Tectonophysics 647, 146–171. https://doi.org/10.1016/j.tecto.2015.02.020.
Shand, S.J., 1947. Eruptive rocks: their genesis, composition, classification, and their relation to ore-deposits, with a chapter on meteorites. T. Murby.
Shibata, T., and Yoshikawa, M., 2004 Precise isotope determination of trace amounts of Nd in magnesium–rich samples. Journal of Mass Spectrometry Society of Japan 52, 317–324.
Shinjo, R., Ginoza, Y., and Meshesha, D., 2010. Improved method of Hf separation from silicate rocks for isotopic analysis using the Ln–spec resin column. Journal of Mineralogical and Petrological Sciences 105, 297–302. https://doi.org/10.2465/jmps.091011.
Smedley, P.L., 1988. Trace Element and Isotopic Variations in Scottish and Irish Dinantian Volcanism: Evidence for an OIB-like Mantle Source. Journal of Petrology 29 (2), 413–443.
Stern, C.R., and Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contribution to Mineralogy and Petrology 123, 263–281.
Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society (London), v. 42, p. 313–345.
Tatsumi, Y., 2000. Slab melting: its role in continental crust formation and mantle evolution. Geophysical Research Letters 27, 3941-3944.
Waight, T.E., Weaver, S.D., and Muir, R.J., 1998. The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition. Contributions to Mineralogy and Petrology, 130, 225-239.
Watson, E.B., 1987. The hole of accessory minerals in granitoid geochemistry. Hutton Conference of the Origin of Granites: Transactions of the Royal Society of Edinburgh, 209-211.
White, A.J.R., and Chappell, B.W., 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In: Roddick, J. A. (ed.) Circum-Pacific Plutonic Terranes. Geological Society of America, Memoir, 159, 21-34.
Zen, E.A., 1986. Aluminum enrichment in silicate melts by fractional crystallization, some mineralogical and petrographic constraints. Journal of Petrology 27, 1095–1118.
Zhou, G., Wu, X.G., Dong, L.H., and Zhang, Z.C., 2009. Formation time and geochemical feature of the Wutubulak pluton in the northeastern margin of Junggar in Xinjiang and its geological significance. Acta Geologica Sinica 25, 1930–1402.
Zindler, A., and Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences 14, 493–571.