Document Type : Original Research Paper


1 Department of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran

2 Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

3 Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

4 Institute for Earth sciences, Geological survey of Iran, Tehran, Iran.


The Urmia Lake, which is a tectonic depression in the northwest of Iran, has received a lot of eroded sediments of the geological records of the lake watershed. Because of the constant drought in the recent years, sediments have been subjected to the wind erosion and thus are an important source for local and regional emission during dust storms. In this research the south and west sediments of the Urmia playa lake have studied on the parent rock issue. Bivariate plots such as Th/Co versus La/Sc and TiO2 versus Al2O3 and comparison proportion of the trace elements such as La/Sc, Th/Sc, La/Co, Th/Co and Cr/Th display mainly the felsic and partly basic rocks source for the studied sediments. Major and trace spider plots of the studied sediments display their depletion with respect to Sc, V, Cr, Ni and enrichment with respect to Th and Sr, confirm mainly a felsic and partly mafic and ultramafic source rocks. Geochemistry of the major elements shows the dry climatic conditions during deposition of Urmia Lake sediments, suggested by bivariate plots of SiO2 against the sum of Al2O3, K2O and Na2O as well as the amount of chemical index of weathering.


Main Subjects

Absar, N., 2021. Mineralogy and geochemistry of siliciclastic Miocene Cuddalore Formation, Cauvery Basin, South India: Implications for provenance and paleoclimate. Journal of Palaeogeography, 10(4), 602-630.
Alagarsamy, R., and Zhang, J., 2010. Geochemical characterization of major and trace elements in the coastal sediments of India. Environmental Monitoring and Assessment, 161(1), 161-176. DOI: 10.1007/s10661-008-0735-2.
Alipour, S., Mosavi-ovenlegi, Kh.,  Hosseini, E.,  Aslanpour, Sh., and Haseli, Z., 2018. Geochemistry of major, trace and rare earth elements in bed-sediments of Urmia lake. Scientific Quarterly Journal of Geosciences, 27, 107, 51-62. 10.22071/GSJ.2018.63758.(In Persian).
Al-Juboury, A.I., and AL-Hadidy, A.H., 2009. Petrology and depositional evolution of the Paleozoic rocks of Iraq: Marine and Petroleum Geology 26(2), 208-231.
Arienzo, M., Ferrara, L., Toscanesi, M., Giarra, A., Donadio, C., and Trifuoggi, M., 2020. Sediment contamination by heavy metals and ecological risk assessment: The case of Gulf of Pozzuoli, Naples, Italy. Marine Pollution Bulletin, 155, 111149.
Armstrong-Altrin, J. S., Madhavaraju, J., Vega-Bautista, F., Ramos-Vázquez, M. A., Pérez-Alvarado, B. Y., Kasper-Zubillaga, J. J., and Bessa, A.Z.E., 2021. Mineralogy and geochemistry of Tecolutla and Coatzacoalcos beach sediments, SW Gulf of Mexico. Applied Geochemistry, 134, 105103.
Banerjee, B., Ahmad, S. M., Babu, E. V. S. S. K., Padmakumari, V. M., Beja, S. K., Satyanarayanan, M., and Krishna, A.K., 2019. Geochemistry and isotopic study of southern Bay of Bengal sediments: Implications for provenance and paleoenvironment during the middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 156-167.
Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C., and Gonzalez-Lopez, J.M., 2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 168, 135–150.
Caracciolo, L., Le Pera, E., Muto, F., and Perri, F., 2011. Sandstone petrology and mudstone geochemistry of the Peruc–Korycany formation (bohemian cretaceous basin, Czech Republic). International Geology Review, 53(9), 1003-1031. DOI:10.1080/00206810903429011.
Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian–Permian Age, Colo-rado, USA: Implications for Provenance and Metamorphic Studies, Lithos 51, 181–203.
Cullers, R.L., 2002. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191(4), 305-327.
Cullers, R.L., Basu, A., and Suttner, L.J., 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology, 70(4), 335-348.
Darvishi Khatouni, J., Mohamadi, A., and Shahrabi, M., 2011. Limnology and Paleolimnology of the Urmia Lake, part III: Paleoclimatology, Paleoecology and Paleogeography, Geological Survey of Iran, 120p. .(In Persian).
Das, B.K., AL-Mikhlafi, A.S., and Kaur, P., 2006. Geochemistry of Mansar Lake sediments, Jammu, India: implication for source-area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences, 26, 649–668.  10.1016/j.jseaes.2005.01.005.
Ding, J., Wu, Y., Tan, L., Fu, T., Du, S., Wen, Y., and Li, D., 2021. Trace and rare earth element evidence for the provenances of aeolian sands in the Mu Us Desert, NW China. Aeolian Research, 50, 100683.
Erfan, Sh., Rezaei, K., Lak, R., and Aleali, S.M., 2020. Evaluation of past climate change in lake Urmia, according to clay minerals. Scientific Quarterly Journal of Geosciences, 29, 115, 123-136. 10.22071/GSJ.2020.108300. .(In Persian).
Etemad-Saeed, N., Hosseini-Barzi. M., and Armstrong-Altrin, J.S., 2011. Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran. Journal of African Earth Sciences, 61, 142–159.
Folk, R.L., 1974. Petrology of Sedimentary Rocks. Hemphill pres, Texas, 182 p.
Fralick, P. W., Hollings, P., Metsaranta, R., and Heaman, L. M. 2009. Using sediment geochemistry and detrital zircon geochronology to categorize eroded igneous units: An example from the Mesoarchean Birch-Uchi Greenstone Belt, Superior Province. Precambrian Research, 168(1-2), 106-122.
Hashemi Azizi, S.H., Rezaee, P., Moussavi Harami, S.R., Jafarzadeh, M., and Masoodi, M., 2018. provenance of siliciclastic Baqoroq Formation, Central Iran, based on petrography and geochemistry: Implication for the evolution of active margin of south Eurasia. Journal of Stratigraphy and Sedimentology Researches, 33(2), 18-40. 10.22108/JSSR.2017.21621.
Hayashi, K.I., Fujisawa, H., Holland, H.D., and Ohmoto, H., 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et cosmochimica acta, 61(19), 4115-4137.
He, J., Garzanti, E., Dinis, P., Yang, S., and Wang, H., 2020. Provenance versus weathering control on sediment composition in tropical monsoonal climate (South China)-1. Geochemistry and clay mineralogy. Chemical Geology, 558, 119860.
Hossain, I., Roy, K. K., Biswas, P. K., Alam, M., Moniruzzaman, M., and Deeba, F., 2014. Geochemical characteristics of Holocene sediments from Chuadanga district, Bangladesh: implications for weathering, climate, redox conditions, provenance and tectonic setting. Chinese Journal of Geochemistry, 33(4), 336-350. DOI:10.1007/s11631-014-0696-9.
Humphreys, B., Morton, A.C., Hallsworth, C.R., Gatliff, W.R., and Riding, J., 1995. An integrated approach to provenance studies: A case example from the Upper Jurassic of the Central Graben, North Sea, In: developments in sedimentary provenance studies (eds. Morton A.C., Todd S.P., Haughton, P.D.W.), published by the Geological Society of London, 230-251.
Jafarzadeh, M., Harami, R.M., Amini, A., Mahboubi, A., and Farzaneh, F., 2014. Geochemical constraints on the provenance of Oligocene–Miocene siliciclastic deposits (Zivah Formation) of NW Iran: implications for the tectonic evolution of the Caucasus. Arabian Journal of Geosciences, 7(10), 4245-4263. DOI:10.1007/s12517-013-1018-y.
Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., and Mahmudi Gharaie, M.H.M., 2012. Geochemistry of Carboniferous Sandstone (Sardar Formation), East-Central Iran: Implication for Provenance and Tectonic setting, Acta Geologica Sinica, 86, 1200-1210. DOI:10.1111/j.1755-6724.2012.00741.x.
Khannazer, N.H., Saidie, A., 2014. Geological map of Urmia Lake, 1:100000, Geological Survey of Iran (In Persian).
Mahu, E., Asiedu, D. K., Nyarko, E., Hulme, S., Coale, K. H., and Anani, C. Y., 2018. Provenance, paleo-weathering and-redox signatures of estuarine sediments from Ghana, Gulf of Guinea. Quaternary International, 493, 176-186.
McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers-Geological Society of America, 21-21.
Mirzapour, B., Lak, R., Aleali, M., Djamali, M., and Shahbazi, R., 2020. Mineralogical reconstruction of Late Pleistocene – Holocene climate and environmental changes in southern wetlands of Lake Urmia, Geopersia, 11 (1), 205-218. 10.22059/GEOPE.2020.306217.648565.
Mirzapour, B., Lak, R., Aleali, M., Djamali, M., and Shahbazi, R., 2021. Identifying the effects of climate changes on sedimentary environments and determining the sedimentation rate of south wetlands of Lake Urmia during Late Pleistocene – Holocene. Pollution, 7 (1), 113-127. 10.22059/POLL.2020.309171.891.
Mirzapour, B., Lak, R., Aleali, M., Djamali, M., and Shahbazi, R., 2020. Sedimentology and sedimentary environments of South and southwestern wetlands of Lake Urmia. Scientific Quarterly Journal of Geosciences, 29. 116, 253-264. 10.22071/GSJ.2020.114221. (In Persian).
Moayyed, M., Moazzen, M., Calagari, A. A., Jahangiri, A., and Modjarrad, M., 2008. Geochemistry and petrogenesis of lamprophyric dykes and the associated rocks from Eslamy peninsula, NW Iran: Implications for deep-mantle metasomatism. Chemie der erde, 68, 141-154.
Moore, F., Forghani, G., and Qishlaqi, A., 2009. Assessment of heavy metal contamination in water and surface sediments of the Maharlu Saline Lake, sw Iran. Iranian Journal of Science & Technology, Transaction, 33, 43-55.
Nesbitt, H., and Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. nature, 299(5885), 715-717. DOI:10.1038/299715a0.
Nosrati, K., Moradian, H., Dolatkordestani, M., Mol, L., and Collins, A.L., 2022. The efficiency of elemental geochemistry and weathering indices as tracers in aeolian sediment provenance fingerprinting. Catena, 210, 105932.
Nowrouzi, Z., Moussavi-Harami, R., Mahboubi, A., Mahmudy Gharaie, M.H., and Ghaemi, F., 2014. Petrography and geochemistry of Silurian Niur sandstones, Derenjal Mountains, East Central Iran: implications for tectonic setting, provenance and weathering. Arabian Journal of Geosciences, 7(7), 2793-2813. DOI:10.1007/s12517-013-0912-7.
Pourkermani, M., and Seddigh, H., 2003. Geomorphological features of Tabriz Fault. Geography and Development, 2, 37-44. .(In Persian).
Ramos-Vázquez, M.A., and Armstrong-Altrin, J.S., 2019. Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology, 110, 650-675.
Rashki, A., Kaskaoutis, D.G., Francois, P., Kosmopoulos, P.G., and Legrand, M., 2015. Dust storm dynamics over sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Research, 16, 3548.
Reheis, M.C., Budahn, J.R., Lamothe, P.J., and Reynolds, R.L., 2009. Compositions of modern dust and surface sediments in the Desert Southwest, United States. Journal of Geophysical Research, 114, 1-20.
Roser, B.P., and Korsch, R.J., 1986. Determination of tectonic setting of sandstone–mudstone suites using SiO2 and K2O/Na2O ratio: Journal of Geology, 94, 635–650.
Salehipour MIlani, A., Lak, R., and Yamani, M., 2021. The Urmia Lake Level Fluctuations History in Late Pleistocene Gographical Planning of Space Quaterly Journal, 10, 38, 23-38. 10.30488/GPS.2021.120857.2738. .(In Persian).
Shahrabi, M., 1994, Geological description of Urmia sheet, 1:250000, Geological Survey of Iran. .(In Persian).
Suttner, L.J., and Dutta, P.K., 1986. Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Research, 56(3), 329-345.
Taheri, A., Jafarzadeh, M., Armstrong-Altrin, J., and Mirbagheri, S.R., 2018. Geochemistry of siliciclastic rocks from the Shemshak Group (Upper Triassic–Middle Jurassic), northeastern Alborz, northern Iran: implications for palaeoweathering, provenance, and tectonic setting. Geological Quarterly, 62(3), 522-535. DOI:
Taylor S.R., and McLennan S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, 312 p.
Taylor, S.R., and McLennan, S.M., 1995. The geochemical evolution of the continental crust. Review Journal of Geophysics, 33, 165-241.
Tripathy, G.R., Singh, S.K., and Ramaswamy, V., 2014. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 397, 20-30.
Wronkiewicz, D.J., and Condie, K.C., 1987. Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: 421. Source Area Weathering and Provenance. Geochimica Cosmochimica Acta, 51, 2401-2416.
Xiao, S., Liu, W., Li, A., Yang, S., and Lai, Z., 2010. Pervasive autocorrelation of the chemical index of alteration in sedimentary profiles and its palaeoenvironmental implications. Sedimentology, 57(2), 670-676.
Yang, S.Y., Lim, D.I., Jung, H.S., and Oh, B.C., 2004. Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea. Marine Geology, 206(1-4), 41-53.
Zand-moghadam, H., Moussavi Harami, R., Mahboubi, A., and Rahimi, B., 2013. Petrography and geochemistry of the Early- Midlle Devonian sandstone of the Padeha Formation in the north of Kerman, SE Iran. Implication for provenance. Boletín del Instituto de Fisiografía y Geología, 83, 1-14.