Document Type : Original Research Paper

Authors

1 Department of Natural Engineering, Faculty of Earth Sciences and Natural Resources, Shahrekord University, Shahrekord, Iran

2 Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

Abstract

The Muteh–Golpayegan Metamorphic Complex is located within the center of the Sanandaj-Sirjan Metamorphic Zone. The strain parameter measurements by the strain ellipsoid including strain ratio in the XZ principal plane, strain ellipsoid (RXZ), strain ellipsoid shape (K), and strain intensity (D) exhibit prolate  shape for the amphibole mineral for the deformed amphibolitic rocks in the Muteh–Golpayegan Metamorphic Complex. Several kinematic shear sense indicators consist of the asymmetric fold, kink fold, boudin, S/C fabrics, oblique grain shape, and mineral fishes show a dextral shear sense. The quantitative kinematic analyses highlight that Wk varies between 0.6 and 0.93, implying a general shear flow with 42% < simple shear <74% and 26% < pure shear <58%.

Keywords

Main Subjects

Aflaki, M., Shabanian, E., Davoodi, Z., and Mohajjel, M., 2017. Reactivation versus reworking of the active continental margin during the Zagros collision: Mahallat–Muteh–Laybid complexes, Sanandaj–Sirjan zone, Iran. Journal of Geodynamics, 107, pp.1-19. https://doi.org/10.1016/j.jog.2017.03.001
Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F., 2005. Convergence History across Zagros, Iran; Constraints from Collisional and Earlier Deformation. International Journal of Earth Sciences, 94, 401-419. http://dx.doi.org/10.1007/s00531-005-0481-4.
Agard, P., Yamato, P., Jolivet, L. and Burov, E., 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Science Reviews, 92(1-2), 53-79. https://doi.org/10.1016/j.earscirev.2008.11.002.
Alavi, M. and Mahdavi, M.A., 1994. Stratigraphy and structures of the Nahavand region in western Iran, and their implications for the Zagros tectonics. Geological Magazine, 131(1), .43-47. https://doi.org/10.1017/S0016756800010475. 
Alavi, M., 1980. Tectonostratigraphic evolution of the Zagrosides of Iran, Geology, 8, 144–149.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations, Tectonophysics, 229, 211–238.
https://doi.org/10.1016/0040-1951(94)90030-2.
Anderson, J.L., and Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American mineralogist, 80 (5-6), pp.549-559.
Babaahmadi, A., Mohajjel, M., Eftekhari, A., and Davoudian, A.R., 2012. An investigation into the fault patterns in the Chadegan region, west Iran: evidence for dextral brittle transpressional tectonics in the Sanandaj–Sirjan Zone. J. Asian Earth Sci. 43, 77–88. https://doi.org/10.1016/j.jseaes.2011.08.012. 
Behyari, M., and Shahbazi, M., 2019. Strain and vorticity analysis in the Zagros suture zone (W Iran): implications for Neo–Tethys post–collision events. J. Struct. Geol. 126, 198–209. https://doi.org/10.1016/j.jsg.2019.06.002.
Berberian, M., and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution ofIran. Can. J. Earth Sci. 18, 210–265. https://doi.org/10.1139/e81-163.
Davoudian, A.R., Genser, J., Neubauer, F. and Shabanian, N., 2016. 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: implications for the tectonic evolution of Zagros orogen. Gondwana Research, 37, pp.216-240. https://doi.org/10.1016/j.gr.2016.05.013.
Davoudian, A.R., Hamedani, A., Shabanian, N., and Mackizadeh, M.A., 2007. Petrological and geochemical constraints on the evolution of the Cheshmeh-Sefid granitoid complex of Golpayegan in the Sanandaj-Sirjan zone, Iran. Neues Jahrbuch für Mineralogie-Abhandlungen, pp.117-129.https://doi.org/10.1127/0077-7757/2007/0085.
Faghih, A., and Sarkarinejad, K., 2011. Kinematics of rock flow and fabric development associated with shear deformation within the Zagros transpression zone, Iran. Geol. Mag. 148, 1009–1017. https://doi.org/10.1017/S0016756811000276.
Forte, A.M., and Bailey, C.M., 2007. Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. J. Struct. Geol. 29, 983–1001.https://doi.org/10.1016/j.jsg.2007.01.006.
Fossen, H., 2016. Structural geology second edition, Cambridge University Press, 520 p.
Goscombe, B.D., Passchier, C.W., and Hand, M., 2004. Boudinage classification: end-member boudin types and modified boudin structures. Journal of structural Geology, 26(4), pp.739-763.Ten Grotenhuis, S.M., Trouw, R.A.J. and Passchier, C.W., 2003. Evolution of mica fish in mylonitic rocks. Tectonophysics, 372(1-2), pp.1-21.https://doi.org/10.1016/j.jsg.2003.08.015.
Hacker, B. R., and Christie, J. M., 1990. Brittle/ductile and plastic/cataclastic transition in experimentally deformed and metamorphosed amphibolite. In A. G. Duba, W. B. Durham, J. W. Handin, & H. F. Wang (Eds.), The brittle–ductile transition in rocks (pp. 127–148). AGU Geophysical Monograph.https://doi.org/10.1029/GM056p0127.
Hashemi, M., Davoudian D, A., Shabanian B. N., and Azizi, H., 2019. Petrographical study of paragneisses in Northeast of Golpayegan: migmatization and evidences of retrograde metamorphism. Iranian Journal of Crystallography and Mineralogy, 27(1), pp.179-190. http://ijcm.ir/article-1-1234-en.html. (In Persian)
Hassanzadeh, J., and Wernicke, B.P., 2016. The Neotethyan Sanandaj‐Sirjan zone of Iran as an archetype for passive margin‐arc transitions. Tectonics, 35(3), 586-621. https://doi.org/10.1002/2015TC003926.
Jones, R.R., Holdsworth, R.E., Clegg, P., McCaffrey, K., and Tavarnelli, E., 2004. Inclined transpression. J. Struct. Geol. 26, 1531–1548. https://doi.org/10.1016/j.jsg.2004.01.004.
keshavarz, S., and Faghih, A., 2020. Heterogeneous sub–simple deformation in the Gol–e–Gohar shear zone (Zagros, SW Iran): insights from microstructural and crystal fabric analyses. Int. J. Earth Sci. 109, 421–438.https://doi.org/10.1007/s00531-019-01812-9.
Ko, B., and Jung, H., 2015. Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature communications, 6(1), p.6586. https://doi.org/10.1038/ncomms7586.
Law, R.D., Searle, M.P., and Simpson, R.L., 2004. Strain, deformation temperatures and vorticity of flow at the top of the greater himalayan slab, everest massif, Tibet. J. Geol. Soc. 161, 305–320. https://doi.org/10.1144/0016-764903-047.
Lisle, R.J., 1985. Geological Strain Analysis: A Manual for the Rf/Φ Technique. Pergamon Press, New York, p. 99. 
Mansouri, S.M., Keshavarz, S., Shahpasandzadeh, M., and Faghih, A., 2021. Strain and vorticity analyses using rotated porphyroclasts in the Tanbour metamorphic rocks: Evidence of transpressional deformation along the Sanandaj-Sirjan metamorphic belt, SW Iran. Journal of Structural Geology, 148, p.104358.https://doi.org/10.1016/j.jsg.2021.104358.
McCall, G.J.H., 1985. In: East Iran Project, Area no. 1, North Makran and South Baluchestan, Geological Survey of Iran, Rep No, p. 57. http://www.mindat.org/index.php.
Mohajjel, M., and Fergusson, C.L., 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj Sirjan zone, western Iran. J. Struct. Geol. 22, 1125–1139. Mukherjee, S., 2013. Deformation Microstructures in Rocks. Springer, Berlin, 1–111. https://doi.org/10.1016/S0191-8141(00)00023-7. 
Mohajjel, M., Fergusson, C.L., and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. J. Asian Earth Sci. 21, 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4.
Monie, P., and Agard, P., 2009. Coeval blueschist exhumation along thousands of kilometers: Implications for subduction channel processes. Geochemistry, Geophysics, Geosystems, 10(7). Doi:10.1029/2009GC002428.
Moosavi, E., Mohajjel, M., and Rashidnejad-Omran, N., 2014. Systematic changes in orientation of linear mylonitic fabrics: an example of strain partitioning during transpressional deformation in north Golpaygan, Sanandaj-Sirjan zone, Iran. J. Asian Earth Sci. 94, 55–67. https://doi.org/10.1016/j.jseaes.2014.07.003.
Moradi, A., Shabanian, N., Davoudian, A.R., Azizi, H., Santos, J.F. and Asahara, Y., 2020. Geochronology and petrogenesis of the Late Neoproterozoic granitic gneisses of Golpayegan metamorphic complex: a new respect for Cadomian crust in the Sanandaj-Sirjan zone, Iran. International Geology Review, 64(10), 1450-1473. https://doi.org/10.1080/00206814.2020.1821251.
Moritz, R., Ghazban, F., and Singer, B. S., 2006. Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, eastern Iran: a result of latestage extension and exhumation of metamorphic basement rocks within the Zagros orogen, Economic Geology, 101, 1497-1524. https://doi.org/10.2113/gsecongeo.101.8.1497.
Morrison-Smith, D.J., 1976. Transmission electron microscopy of experimentally deformed hornblende. American Mineralogist, 61(3-4), 272-280.
Nadimi, A., and Nadimi, H., 2008. Exhumation of old rocks during the Zagros collision in the northwestern part of the Zagros Mountains, Iran. Investigations into the tectonics of the Tibetan Plateau. Geol. Soc. Am., Spec. Pap, 444, 105-122. DOI: 10.1130/2008.2444(07).
Passchier, C.W., and Trouw, R.A., 2005. Microtectonics. Springer Science & Business Media.
Rashidnejad-Omran, N., Emami, M. H., Sabzehei, M., Rastad, E., Bellon, H., and Pique, A., 2002. Lithostragraphie et histoirePaléozoïque à Paléocène des complexes métamorphiques de la Région de Muteh, zone de Sanandaj-Sirjan (Iran Méridional). Comptesrendus Géoscience, 334, 1185-1191.https://doi.org/10.1016/S1631-0713(02)01861-8.
Ramsay, J.G., and Huber, M.I., 1983. The Techniques of Modern Structural Geology, Strain Analysis, Academic Press, London, 307 p.
Ramsay, J.G., and Wood, D.S., 1973. The geometric effects of volume change during deformation processes. Tectonophysics, 16(3-4), 263-277.https://doi.org/10.1016/0040-1951(73)90015-2 .
Ramsay, J.G., 1967. Folding and fracturing of rocks, McGraw-Hill, New York.
Saha, T., and Karmakar, S., 2015. Petrotectonic framework of granitoids and associated granulites at nagavalli shear zone (NSZ), eastern Ghats belt: evidence of a late transpression orogeny. J. Earth Syst. Sci. 124, 707–727. https://doi.org/10.1007/s12040-015-0579-4.
Sadeghi, S., Storti, F., Yassaghi, A., Nestola, Y., and Cavozzi, C., 2016. Experimental deformation partitioning in obliquely converging orogens with lateral variations of basal décollement rheology: Inferences for NW Zagros, Iran. Tectonophysics, 693, 223-238. https://doi.org/10.1016/j.tecto.2016.05.014.
Sadeghi, S., Yassaghi, A., and Fathollahi, M., 2013. Structural Analysis of the Main Recent Fault and its Relation with The Main Zagros Reverse Fault in Kurdistan. Scientific Quarterly Journal of Geosciences, 22(88), 41-50. https://doi.org/10.22071/gsj.2013.53639. (In Persian)
Sadr, A.H., Mohajjel, M., and Yasaghi, A., 2010. Structural Analysis of the Zagros Collision Zone, West Aligodarz. Scientific Quarterly Journal of Geosciences, 19(76), 149-158. https://doi.org/10.22071/gsj.2010.55674. (In Persian)
Samani, B., 2013. Quartz c–axis evidence for deformation characteristics in the Sanandaj–Sirjan metamorphic belt, Iran. J. Afr. Earth Sci. 81, 28–34. https://doi.org/10.1016/j.jafrearsci.2013.01.006 .
Samani, B., 2017. Deformation flow analysis and symmetry of Goushti shear zone, Sanandaj–Sirjan metamorphic belt. Iran Geopersia 7, 117–130. Doi: 10.22059/geope.2017.219333.648281.
Sarkarinejad, K., and Azizi, A., 2008. Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology, 30(1), 116-136. https://doi.org/10.1016/j.jsg.2007.10.001.
Sarkarinejad, K., Godin, L. and Faghih, A., 2009. Kinematic vorticity flow analysis and 40Ar/39Ar geochronology related to inclined extrusion of the HP–LT metamorphic rocks along the Zagros accretionary prism, Iran. J. Struct. Geol. 31, 691–706. https://doi.org/10.1016/j.jsg.2009.04.003.
Sarkarinejad, K. and Keshavarz, S., 2014. Quantitative kinematic analysis of the asymmetric boudins of the Zagros accretionary prism, Iran. J. Geosci. 19, 415–430.https://doi.org/10.1007/s12303-014-0049-z.
Sarkarinejad, K., Keshavarz, S., Faghih, A., Samani, B., 2017. Kinematic analysis of rock flow and deformation temperature of the Sirjan thrust sheet, Zagros Orogen, Iran. Geol. Mag. 154, 147–165. https://doi.org/10.1017/S0016756815000941.
ShafieiBafti, Sh. and Mohajjel, M., 2015. Structural evidence for slip partitioning and inclined dextral transpression along the SE Sanandaj–Sirjan zone, Iran. Int. J. Earth Sci. 104, 587–601. https://doi.org/10.1007/s00531-014-1106-6 .
Sharifi, M., Noghreyan, M., Safaei, H., Noorbehesht, I., and Ahmadian, J., 2007. Classification of granitoids from the Golpaygan area on the basis of the tectonic setting. J. Appl. Sci. 7 (220), 3420–3430. https://scialert.net/abstract/?doi=jas.2007.3420.3430 
Sheikholeslami, M.R., Ghassemi, M.R., and Hassanzadeh, J., 2019. Tectonic evolution of the hinterland of the Zagros Orogen revealed from the deformation of the Golpaygan Metamorphic Complex, Iran. Journal of Asian Earth Sciences, 182, p.103929. https://doi.org/10/1016/j.jseaes.2019.103929.
Sheikholeslami, M.R., and Zamani-Pedram, M., 2005. Geological Map of Iran Sheet 6057- Mahallat, Scale 1:100,000. Geological Survey of Iran, Tehran.
Shelley, D., 1994. Spider texture and amphibole preferred orientations. Journal of Structural Geology, 16(5), .709-717. 
https://doi.org/10.1016/0191-8141(94)90120-1.
Stampfli, G.M., 2000. Tethyan oceans. Geological society, london, special publications, 173(1), 1-23.
Ten Grotenhuis, S.M., Trouw, R.A.J., and Passchier, C.W., 2003. Evolution of mica fish in mylonitic rocks. Tectonophysics, 372(1-2), 1-21. https://doi.org/10.1016/S0040-1951(03)00231-2.
Tikoff, B., and Fossen, H., 1993. Simultaneous pure and simple shear: the unifying deformation matrix. Tectonophysics, 217(3-4), 267-283. https://doi.org/10.1016/0040-1951(93)90010-H.
Tiwari, S.K., Beniest, A., and Biswal, T.K., 2019. Variation in vorticity of flow during exhumation of lower crustal rocks 
(Neoproterozoic Ambaji granulite, NW India). J. Struct. Geol. 130 https://doi.org/10.1016/j.jsg.2019.103912.
Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., 2011. A Paleogene extensional arc flare‐up in Iran. Tectonics, 30(3). https://doi.org/10.1029/2010TC002809.
Vitale, S., and Mazzoli, S., 2009. Finite strain analysis of a natural ductile shear zone in limestones: insights into 3–D coaxial vs. non–coaxial deformation partitioning. J. Struct. Geol. 31, 104–113.https://doi.org/10.1016/j.jsg.2008.10.011.
Wallis, S.R., 1992. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 14(3), pp.271-280. https://doi.org/10.1016/0191-8141(92)90085-B.
Wallis, S.R., 1995. Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan. J. Struct. Geol. 17, 1077–1093. https://doi.org/10.1016/0191-8141(95)00005-X. 
Wang, K., Liu, J., Yang, H., and Liang, S., 2019. Deformation of amphibolites from the Paleoproterozoic Liaohe Group, Liaodong Peninsula, China: Implications to the crustal structure of the Jiao‐Liao‐Ji mobile belt in the eastern block, North China Craton. Geological Journal, 54(2), 791-803. https://doi.org/10.1002/gj.3469.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), pp.185-187. Doi: 10.2138/am.2010.3371.
Xypolias, P., 2009. Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. J. Struct. Geol. 31, 3–10.  https://doi.org/10.1016/j.jsg.2008.09.009.
Xypolias, P., 2010. Vorticity analysis in shear zones: a review of methods and applications. Journal of structural Geology, 32(12), 2072-2092. https://doi.org/10.1016/j.jsg.2010.08.009.
Xypolias, P., Spanos, D., Chatzaras, V., Kokkalas, S., and Koukouvelas, I., 2010. Vorticity of flow in ductile thrust zones: examples from the attico–cycladic massif (internal Hellenides, Greece). Geol. Soc. London, Special Publ. 335, 687–714. Further reading. https://doi.org/10.1144/SP335.28 .