Document Type : Original Research Paper

Authors

1 Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

2 School of Geology, College of Science, University of Tehran, Tehran, Iran

3 Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran

Abstract

In the present study, in order to reconstruct the paleoenvironmental and climatic changes of Jiroft during the last 4000 years, several evidences of sedimentology and biogeochemistry on a sedimentary core have been investigated. Around. 3950 cal yr BP, low values of Ti/Al, Si/Al, C/N and CPI along with high values of δ13COM, and Paq indicate a wet period in Jiroft. evidence indicates a relative decrease in humidity between about 3900 and 3293 cal yr BP. Between 3293 and 2897 cal yr BP, Jiroft was dry and dusty. The results show very dry conditions with a significant increase in the amount of dust around 3200 cal yr BP. A long-wet period from about 2897 to 2302 cal yr BP can be recognized with high Paq values. The highest Ti/Al values along with the lowest δ13COM values indicate increased wind activity and dry conditions between 2100 and 1650 cal yr BP. Jiroft experienced wet conditions between 1540 and 1315 cal yr BP. With the relative decrease of rainfall, a semi-humid climate prevailed in Jiroft between 1315 and 854 cal yr BP.

Keywords

Main Subjects

Akbari Azirani, T., 2022. Detection and trend analysis of drought in the Jazmurian basin of Iran associated with ocean- atmospheric indices. Clim. Chang. Res. 3, 1–16. https://doi.org/10.30488/ccr.2022.359615.1091.
Allan, J., and Douglas, A.G., 1977. Variations in the content and distribution of n-alkanes in a series of Carboniferous vitrinites and sporinites of bituminous rank. Geochim. Cosmochim. Acta 41, 1223–1230.
Blaauw, M., and Andrés Christen, J., 2011. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process, Bayesian Analysis. https://doi.org/10.1214/11-BA618.
Blumler, M., 2005. Three Conflated Definitions of Mediterranean Climates. Middle States Geogr. 38.
Bourbonniere, R.A., and Meyers, P.A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 41. https://doi.org/10.4319/lo.1996.41.2.0352.
Calvert, S.E., and Fontugne, M.R., 2001. On the late Pleistocene‐Holocene sapropel record of climatic and oceanographic variability in the eastern Mediterranean. Paleoceanography 16, 78–94.
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato, T., John, H., Boomer, I., Chen, J., An, C., and Wünnemann, B., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 27. https://doi.org/10.1016/j.quascirev.2007.10.017.
Cranwell, P.A., 1974. Monocarboxylic acids in lake sediments: Indicators, derived from terrestrial and aquatic biota, of paleoenvironmental trophic levels. Chem. Geol. 14. https://doi.org/10.1016/0009-2541(74)90092-8.
Cranwell, P.A., Eglinton, G., and Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org. Geochem. 11, 513–527.
Dearing, J., 1994. Environmental magnetic susceptibility. Using Bartingt. MS2 Syst. Kenilworth, Chi Publ.
Djamali, M., Akhani, H., Andrieu-Ponel, V., Braconnot, P., Brewer, S., de Beaulieu,  jacques-L., Fleitmann, D., Fleury, J., Gasse, F., Guibal, F., Jackson, S., Lezine, A.-M., Médail, F., Ponel, P., Roberts, N., and Stevens, L., 2010a. Indian Summer Monsoon variations could have affected the early-Holocene woodland expansion in the Near East, The Holocene. https://doi.org/10.1177/0959683610362813.
Djamali, M., Beaulieu, J. de, and Shah-hosseini, M., 2008. A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary.
Djamali, M., Miller, N.F., Ramezani, E., Andrieu-Ponel, V., de Beaulieu, J.-L., Berberian, M., Guibal, F., Lahijani, H., Lak, R., and Ponel, P., 2010b. Notes on Arboricultural and Agricultural Practices in Ancient Iran based on New Pollen Evidence. Paléorient 36. https://doi.org/10.3406/paleo.2010.5394.
Eglinton, G., and Hamilton, R.J., 1967. Leaf epicuticular waxes. Science (80-. ). 156. https://doi.org/10.1126/science.156.3780.1322.
Enzel, Y., Ely, L.L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V.R., and Sandler, A., 1999. High-resolution holocene environmental changes in the Thar Desert, northwestern India. Science (80- ). 284, 125 LP – 128.
Fallah, B., Sodoudi, S., Russo, E., Kirchner, I., and Cubasch, U., 2017. Towards modeling the regional rainfall changes over Iran due to the climate forcing of the past 6000 years. Quat. Int. 429. https://doi.org/10.1016/j.quaint.2015.09.061.
Ficken, K.J., Li, B., Swain, D.L., and Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes, in: Organic Geochemistry. https://doi.org/10.1016/S0146-6380(00)00081-4.
Fiorentino, G., Caracuta, V., Calcagnile, L., D’Elia, M., Matthiae, P., Mavelli, F., and Quarta, G., 2008. Third millennium B.C. climate change in Syria highlighted by Carbon stable isotope analysis of 14C-AMS dated plant remains from Ebla. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266. https://doi.org/10.1016/j.palaeo.2008.03.034.
Fouache, E., Garçon, D., Rousset, D., Sénéchal, G., and Madjidzadeh, Y., 2005. La vallée de l’Halil Roud (région de Jiroft, Iran) : étude géoarchéologique, méthodologie et résultats préliminaires. Paléorient 31. https://doi.org/10.3406/paleo.2005.5128.
Goslar, T., and Czernik, J., 2000. Sample preparation in the Gliwice Radiocarbon Laboratory for ams 14C dating. Geochronometria Vol. 18, 1–8.
Griffiths, H., Schwalb, A., and Stevens, L., 2001. Evironmental change in southwestern Iran: the Holocene ostracod fauna of Lake Mirabad. The Holocene.
Grousset, F., Buatmenard, P., Boust, D., Tian, R.C., Baudel, S., Pujol, C., and Vergnaudgrazzini, C., 1989. Temporal changes of aeolian Saharan input in the Cape Verde abyssal-plain since the last glacial period. Oceanol. acta 12, 177–185.
Gurjazkaite, K., Routh, J., Djamali, M., Vaezi, A., Poher, Y., Beni, A.N., Tavakoli, V., and Kylin, H., 2018. Vegetation history and human-environment interactions through the late Holocene in Konar Sandal, SE Iran. Quat. Sci. Rev. 194. https://doi.org/10.1016/j.quascirev.2018.06.026.
Hedges, J.I., and Stern, J.H., 1984. Carbon and nitrogen determinations of carbonate-containing solids1. Limnol. Oceanogr. 29, 657–663. https://doi.org/10.4319/lo.1984.29.3.0657.
Hodell, D.A., and Schelske, C.L., 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 43, 200–214. https://doi.org/10.4319/lo.1998.43.2.0200.
Jiang, H., and Ding, Z., 2010. Eolian grain-size signature of the Sikouzi lacustrine sediments (Chinese Loess Plateau): Implications for Neogene evolution of the East Asian winter monsoon. GSA Bull. 122, 843–854.
Joy Kagan, E., Langgut, D., Boaretto, E., Herald Neumann, F., and Stein, M., 2015. Dead Sea Levels during the Bronze and Iron Ages. Radiocarbon 57. https://doi.org/10.2458/azu_rc.57.18560.
Kehl, M., 2009. Quaternary Climate Change in Iran–the State of Knowledge, Erdkunde. https://doi.org/10.3112/erdkunde.2009.01.01.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 15. https://doi.org/10.1127/0941-2948/2006/0130.
Kuzucuoǧlu, C., Dörfler, W., Kunesch, S., and Goupille, F., 2011. Mid- to late-Holocene climate change in central Turkey: The tecer lake record. Holocene 21. https://doi.org/10.1177/0959683610384163.
Lemcke, G., and Sturm, M., 1997. δ18O and Trace Element Measurements as Proxy for the Reconstruction of Climate Changes at Lake Van (Turkey): Preliminary Results, in: Dalfes, H.N., Kukla, G., Weiss, H. (Eds.), Third Millennium BC Climate Change and Old World Collapse. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 653–678. https://doi.org/10.1007/978-3-642-60616-8_29.
Magyari, E.K., Veres, D., Wennrich, V., Wagner, B., Braun, M., Jakab, G., Karátson, D., Pál, Z., Ferenczy, G., St-Onge, G., Rethemeyer, J., Francois, J.P., von Reumont, F., and Schäbitz, F., 2014. Vegetation and environmental responses to climate forcing during the Last Glacial Maximum and deglaciation in the East Carpathians: Attenuated response to maximum cooling and increased biomass burning. Quat. Sci. Rev. 106. https://doi.org/10.1016/j.quascirev.2014.09.015.
Maher, B.A., Thompson, R., and Zhou, L.P., 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth Planet. Sci. Lett. 125, 461–471. https://doi.org/10.1016/0012-821X(94)90232-1.
Martinez-Ruiz, F., Kastner, M., Gallego-Torres, D., Rodrigo-Gámiz, M., Nieto-Moreno, V., and Ortega-Huertas, M., 2015. Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat. Sci. Rev. 107, 25–46.
Mashkour, M., Tengberg, M., Shirazi, Z., and Madjidzadeh, Y., 2013. Bio-archaeological studies at Konar Sandal, Halil Rud basin, southeastern Iran. Environ. Archaeol. 18, 222–246.
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., and Prentice, M., 1997. Major features and forcing of high‐latitude northern hemisphere atmospheric circulation using a 110,000‐year‐long glaciochemical series. J. Geophys. Res. Ocean. 102, 26345–26366.
Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B., and Nadelhoffer, K.J., 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115, 189–198.
Mercone, D., Thomson, J., Abu-Zied, R.H., Croudace, I.W., and Rohling, E.J., 2001. High-resolution geochemical and micropalaeontological profiling of the most recent eastern Mediterranean sapropel. Mar. Geol. 177, 25–44.
Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34, 261–289. https://doi.org/10.1016/S0146-6380(02)00168-7.
Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1.
Meyers, P.A., and Ishiwatari, R., 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20, 867–900. https://doi.org/10.1016/0146-6380(93)90100-P.
Meyers, P.A., and Teranes, J.L., 2001. Sediment Organic Matter, in: Last, W.M., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments: Physical and Geochemical Methods. Springer Netherlands, Dordrecht, pp. 239–269. https://doi.org/10.1007/0-306-47670-3_9.
Migowski, C., Stein, M., Prasad, S., Negendank, J.F.W., and Agnon, A., 2006. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quat. Res. 66. https://doi.org/10.1016/j.yqres.2006.06.010.
Neumann, F.H., Kagan, E.J., Schwab, M.J., and Stein, M., 2007. Palynology, sedimentology and palaeoecology of the late Holocene Dead Sea. Quat. Sci. Rev. 26. https://doi.org/10.1016/j.quascirev.2007.03.004.
Nicoll, K., and Küçükuysal, C., 2013. Emerging multi-proxy records of Late Quaternary Palaeoclimate dynamics in Turkey and the surrounding region. Turkish J. Earth.
Ocakoğlu, F., Dönmez, E.O., Akbulut, A., Tunoğlu, C., Kır, O., Açıkalın, S., Erayık, C., Yılmaz, İ.Ö., and Leroy, S.A.G., 2016. A 2800-year multi-proxy sedimentary record of climate change from Lake Çubuk (Göynük, Bolu, NW Anatolia). The Holocene 26, 205–221.
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., Van Der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 62. https://doi.org/10.1017/RDC.2020.41.
Roberts, N., Jones, M.D., Benkaddour, A., Eastwood, W.J., Filippi, M.L., Frogley, M.R., Lamb, H.F., Leng, M.J., Reed, J.M., Stein, M., 2008. Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quat. Sci. Rev. 27, 2426–2441.
Roberts, N., Reed, J.M., Leng, M.J., Kuzucuoǧlu, C., Fontugne, M., Bertaux, J., Woldring, H., Bottema, S., Black, S., Hunt, E., and Karabiyikoǧlu, M., 2001. The tempo of Holocene climatic change in the eastern Mediterranean region: New high-resolution crater-lake sediment data from central Turkey. Holocene 11. https://doi.org/10.1191/09596830195744.
Robinson, S.G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. Inter. 42. https://doi.org/10.1016/S0031-9201(86)80006-1.
Sarnthein, M., Thiede, J., Pflaumann, U., Erlenkeuser, H., Fütterer, D., Koopmann, B., Lange, H., and Seibold, E., 1982. Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years, in: Geology of the Northwest African Continental Margin. Springer, pp. 545–604.
Schilman, B., Bar-Matthews, M., Almogi-Labin, A., and Luz, B., 2001. Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 176. https://doi.org/10.1016/S0031-0182(01)00336-4.
Schwark, L., Zink, K., and Lechterbeck, J., 2002. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30. https://doi.org/10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2.
Sharifi, A., Pourmand, A., Canuel, E.A., Ferer-Tyler, E., Peterson, L.C., Aichner, B., Feakins, S.J., Daryaee, T., Djamali, M., Beni, A.N., Lahijani, H.A.K., and Swart, P.K., 2015. Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization? Quat. Sci. Rev. 123, 215–230. https://doi.org/10.1016/j.quascirev.2015.07.006.
Sinha, R., Smykatz-Kloss, W., Stüben, D., Harrison, S.P., Berner, Z., and Kramar, U., 2006. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 233, 252–270. https://doi.org/10.1016/j.palaeo.2005.09.012.
Stevens, L.R., Ito, E., Schwalb, A., and Wright, H.E., 2006. Timing of atmospheric precipitation in the Zagros Mountains inferred from a multi-proxy record from Lake Mirabad, Iran. Quat. Res. 66, 494–500.
Stevens, L.R., Ito, E., and Wright, H.E., 2008. Variations in effective moisture at Lake Zeribar, Iran dusing the last glacial period and Holocene, inferred from the d18O values of authigenic calcite, Diatom Monographs, 8. p. 377.
Stevens, L.R., Wright, H.E., and Ito, E., 2001. Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. The Holocene 11, 747–755.
Talbot, M.R., Jensen, N.B., Lærdal, T., and Filippi, M.L., 2006. Geochemical responses to a major transgression in giant African lakes. J. Paleolimnol. 35, 467–489.
Taylor, S.R., and McLennan, S.M., 1985. The continental crust: its composition and evolution.
Thompson, R., and Morton, D.J., 1979. Magnetic susceptibility and particle-size distribution in Recent sediments of the Loch Lomond drainage basin, Scotland. J. Sediment. Res. 49, 801 LP – 811.
Vaezi, A., Ghazban, F., Tavakoli, V., Routh, J., Beni, A.N., Bianchi, T.S., Curtis, J.H., and Kylin, H., 2019. A Late Pleistocene-Holocene multi-proxy record of climate variability in the Jazmurian playa, southeastern Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514. https://doi.org/10.1016/j.palaeo.2018.09.026.
Vaezi, A., Routh, J., Djamali, M., Gurjazkaite, K., Tavakoli, V., Beni, A.N., and Roberts, P., 2022. New multi-proxy record shows potential impacts of precipitation on the rise and ebb of Bronze Age and imperial Persian societies in southeastern Iran. Quat. Sci. Rev. 298, 107855. https://doi.org/10.1016/J.QUASCIREV.2022.107855.
Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R., and Swennen, R., 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon. Quat. Res. 70, 368–381. https://doi.org/10.1016/j.yqres.2008.05.004.
Wakeham, S.G., Peterson, M.L., Hedges, J.I., and Lee, C., 2002. Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 2265–2301.
Wasylikowa, E.K., and Witkowski, A. (Eds.), 2008. Diatom Monographs Vol.8 The palaeoecology of Lake Zeribar and surrounding areas , Western Iran , during the last 48000 years. A.R.G.Gantner Verlag K.G.
Wehausen, R., and Brumsack, H.-J., 2000. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 325–352.
Zandifar, S., Tavakoli, V., Vaezi, A., Naeimi, M., Naderi Beni, A., Sharifi-Yazdi, M., and Routh, J., 2022. Influence of transport mechanism on playa sequences, late Pleistocene-Holocene period in Jazmurian Playa, southeast Iran. Arab. J. Geosci. 15. https://doi.org/10.1007/s12517-022-09918-2.