Document Type : Original Research Paper


1 Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

3 National Iranian Copper Industry Co., Kerman, Iran


The geochemical separation pattern and environmental behavior of rare earth elements (ΣREE) have been investigated in 5 different sedimentary systems related to the Dar-e-Allo copper mine. For this purpose, the total concentration and sequential patterns of ΣREE elements were determined using multi-acid digestion and mBCR (Modified Community Bureau of Reference, European Commission) selective extraction method. The normalization patterns of the total concentration of ΣREE are drawn based on the average North American Shale Composition (NASC) and Upper Continental Crust (UCC). General trends of concentration changes in the five sedimentary systems are very similar to each other, and the concentration of LREEs is higher than that HREEs, just a sample taken from under the rock dump that contains sulfide-leached elements shows a pattern different from other samples and standard patterns. Opposite of the changes in the concentration of ΣREEs, more enrichment is seen in HREEs compared to LREEs. This pattern of enrichment changes is consistent with the higher tendency of HREEs than LREEs for mobility during weathering and oxidation. The geochemical separation patterns of ΣREEs in natural sediment and samples containing iron and manganese oxides are mainly dominated by the residual fraction. Surprisingly, considering the different conditions of formation and stability in the samples taken from the waterways leading to the mine, evaporite deposits and sediments washed from the rock dump, the separation pattern of ΣREEs is controlled mainly with two parts soluble in Acid and reducible fraction. According to the enrichment trends, the trend of mobility and bioavailability from LREEs to HREEs increases with an upward slope. These results show that speciation, geochemical separation pattern and environmental behavior for ΣREEs without considering key environmental factors lead to a lack of understanding or even misinterpretation. The results of this study can be used as a reference in organizing the mine development and environmental planning of the Dar-e-Allo copper mine.


Main Subjects

Alimohammadi, M., Alirezaei, S., Ghaderi, M., and Kentucky, D., 2016. Geochemistry, regeneration and tectonic location of volcanic and intrusive rocks in the area of porphyry copper deposits in Dar-e-allo and Sarmashk, south of the belt Kerman Copper, Iran. Earth Sciences, 98, 159 -170. doi.10.22071/gsj.2016.41187 (In Persian).
Asadi, S., Moore, F., and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth Sci. Rev, 138, 25–46. doi.10.1016/j.earscirev.2014.08.001.
Aström, M., 2001. Abundance and fractionation of rare earth elements in streams affected by acid sulphate soils. Chem. Geol, 175, 249–258. doi.10.1016/S0009-2541(00)00294-1.
Banks, D., Hall, G., Reimanna, C., and Siewers, U., 1999. Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions, Norway. Appl. Geochem, 14, 27-39. doi.10.1016/S0883-2927(98)00037-7.
Barzegar, H., 2007. Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran. Unpublished Ph.D. thesis, Aachen University, Germany, p. 202.
Bavi, H., Mahmudy-Gharaie, M.H., Moussavi‑Harami, R., Zand‑Moghadam, H., Mahboubi, A., and Tohidi, M.R., 2023. Spatial dispersion hot spots of contamination and human health risk assessments of PTEs in surface sediments of streams around porphyry copper mine, Iran. Environ Geochem Health, doi.10.1007/s10653-022-01471-x.
Bayless, E.R., and Olyphant, G.A., 1993. Acid generating salts and their relationship to the chemistry of groundwater and storm runoff at an abandonedmine site in southwestern Indiana, USA. J. Contam. Hydrol, 12, 313–328. doi.10.1016/0169-7722(93)90003-B.
Berger, B.R., Ayuso, R.A., Wynn, J.C., and Seal, R.R., 2008. Preliminary model of porphyry copper deposits: U.S Geological Survey Open-File Report, 1321, 55 p.
Bozau, E., Leblanc, M., Seidel, J.L., and Stärk, H.J., 2004. Light rare earth elements enrichment in an acidic mine lake (Lusatia, Germany). Appl. Geochem, 19, 261–271. doi.10.1016/S0883-2927(03)00150-1.
Byrne, R.H., and Kim, K.H., 1993. Rare earth precipitation and coprecipitation behavior: the limiting role of PO4 3- on dissolved rare earth concentrations in seawater. Geochim. Cosmochim. Acta, 57, 519–526. doi.10.1016/0016-7037(93)90364-3.
Choque, L.F.C., Ramos, O.E.R., Castro, S.N.V., Aspiazu, R.R.Ch., Mamani, R.G.Ch., Alcazar, S.G.F., and Sracek, O., P., 2013. Fractionation of heavy metals and assessment of contamination of the sediments of Lake Titicaca. Environ. Monit. Assess, 185, 9979-9994. doi.10.1007/s10661-013-3306-0.
Compton, J. S., White, R. A., and Smith, M., 2003. Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem. Geol, 201 (3-4), 239-255. doi.10.1016/S0009-2541(03)00239-0.
Consani, S., Cutroneo, L., Carbone, C., and Capello, M., 2020. Baseline of distribution and origin of Rare Earth Elements in marine sediment of the coastal area of the Eastern Gulf of Tigullio (Ligurian Sea, North-West Italy). Mar. Pollut. Bull, 155, doi.10.1016/j.marpolbul.2020.111145.
Davranche, M., Grybos, M., Gruau, G., Pédrot, M., Dia, A., and Marsac, R., 2011. Rare earth element patterns: a tool for identifying trace metal sources during wetland soil reduction. Chem. Geol, 284(1-2), 0-137. doi.10.1016/j.chemgeo.2011.02.014.
Deditius, A.P., Utsunomiya, S., Reich, M., Kesler, S.E., Ewing, R.C., Hough, R., and Walshe, J., 2011. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 42, 32–46. rock system: evidence from fracture-filling calcite. Appl. Geochem, 18, 135-143. doi.10.1016/j.oregeorev.2011.03.003.
Dia, A., Gruau, G., Olivié-Lauquet, G., Riou, C., Molénat, J., and Curmi, P., 2000. The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta, 64, 479 4131–4151. doi.10.1016/S0016-7037(00)00494-4.
Dold, B., and Fontboté, L., 2001. Element cycling and secondary mineralogy in porphyry copper tailings as function of climate, primary mineralogy, and mineral processing. J. Geochem. Explor, 74, 2–55. doi.10.1016/S0375-6742(01)00174-1.
Elderfield, H., Upstill-Goddard, R., and Sholkovitz, E.R., 1990. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54(4): 971-991.
Ferna ́ndez, E., Jime ́nez, R., Lallena, A.M., and Aguilar, J., 2004. Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environ. Pollut, 131, 355-364. doi.10.1016/j.envpol.2004.03.013.
Forstner, U., 2004. Traceability of sediment analysis. TRAC, 23, 217-236. doi.10.1016/0016-7037(90)90432-K.
Fristak, F., Valovciakova, M., Pipiska, M., and Augustin, J., 2012. Simultaneous and Sequential Extraction Protocols as Tools for Determination of Zinc Bioavailability in Dried. Nova Biotechnologica et Chimica, 11-2. doi.10.2478/v10296-012-0019-7.
Gammons, C.H., Wood, S.A., Pedrozo, F., Varekamp, J.C., Nelson, B.J., Shope, C.L., and Baffico, C., 2005. Hydrogeochemistry and rare earth element behaviour in volcanically acidified watershed in Patagonia, Argentina. Chem. Geol, 222, 249–267. doi.10.1016/j.chemgeo.2005.06.002.
Guo, H. M., Zhang, B., Wang, G. C., and Shen, Z. L., 2010. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chem. Geol, 270, 517 117-125. doi.10.1016/j.chemgeo.2009.11.010.
Heydarian, F., 2000. Investigation of geology and mineral potential of porphyry copper deposit in Dar-e-Allo. Master's thesis, Faculty of Science, Shahid Bahonar University, Kerman, 181 pages. (In Persian).
Jamali, M.K., Kazi, T.G., Afridi, H.I., Arain, M.B., Jalbani, N., and Memon, A.R., 2007. Speciation of heavy metals in untreated domesticwastewater sludge by time saving BCR sequential extraction method. Environ. Sci. Health, 42, 649–659. doi.10.1080/10934520701244433 .
Janssen, R.P.T., and Verweij, W., 2003. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands. Water Res, 37(6),1320-50. doi.10.1016/S0043-1354(02)00492-X .
Johannesson, K.H., Stetzenbach, K.J., and Hodge, V.F., 1997. Rare earth elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta, 61, 3605–3618. doi.10.1016/S0016-7037(97)00177-4.
Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., and Lyons, W.B., 1996. Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett, 139, 305– 319. doi.10.1016/0012-821X(96)00016-7.
Kabata-Pendias, A., and Mukherjee, A.B., 2007. Trace Elements from Soil to Human. Springer-Verlag Berlin Heidelberg, 561p.
Keith, D.C., Runnells, D.D., Esposito, K.J., Chermak, J.A., and Hannula, S.R., 1999. Efflorescent Sulfate Salts— Chemistry, Mineralogy, and Effects on ARD Streams. Tailings and Mine Waste '99. Balkema, Rotterdam, 573–579. doi.10.2138/am-2003-11-1235.
Keith, D.C., Runnells, D.D., Esposito, K.J., Chermak, J.A., Levy, D.B., Hannula, S.R., Watts, M., and Hall, L., 2001. Geochemical models of the impact of acidic groundwater and evaporative sulfate salts on Boulder Creek at Iron Mountain, California. Appl. Geochem. 16, 947–961, doi.10.1016/S0883-2927(00)00080-9.
Keshavarzifard, M., Moore, F., and Sharifi., R., 2019. The influence of physicochemical parameters on bioavailability and bioaccessibility of heavy metals in sediments of the intertidal zone of Asaluyeh region, Persian Gulf, Iran. Geochemistry, 79, 178–187. doi.10.1016/j.geoch.2018.12.007.
Khadhar, S., Sdiri, A., Chekirben, A., Azouzi, R., and Charef, A., 2020. Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils. Environ. Pollut, 263, 114543. doi.10.1016/j.envpol.2020.114543.
Khorasanipour, M., and Rashidi, S., 2019. Geochemical fractionation pattern and environmental behavior of rare earth elements (REEs) in mine wastes and mining contaminated sediments; Sarcheshmeh mine, SE of Iran. J. Geochem. Explor, doi:org/10.1016/j.gexplo.2019.106450.
Khorasanipour, M., and Jafari, Z., 2018. Environmental geochemistry of rare earth elements in Cu porphyry mine tailings in the semiarid climate conditions of Sarcheshmeh mine in southeastern Iran. Chem. Geol. 477, 58-72, doi.10.1016/j.chemgeo.2017.12.005.
Kimoto, A., Nearing, M. A., Zhang, X. C., and Powell, D. M., 2006. Applicability of rare earth element oxides as a sediment tracer for coarse-textured soils. Catena, 65 (3), 214-221. doi.10.1016/j.catena.2005.10.002.
Kumkrong, P., Dy, E., Tyo, D.D., Jiang, C., Pihilligawa, I.G., Kingston, D., and Mercier, P.H.J., 2022. Investigation of metal mobility in gold and silver mine tailings by single-step and sequential extractions. Environ. Monit. Assess, 194, 423. doi.10.1007/s10661-022-10054-3.
Laveuf, C., and Cornu, S., 2009. A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154, 1-12. doi.10.1016/j.geoderma.2009.10.002.
Lecomte, K.L., Sarmiento, A.M., Borrego, J., and Nieto, J.M., 2017. Rare earth elements mobility processes in an AMD-affected estuary: Huelva Estuary (SW Spain). Mar. Pollut. Bull, 121, 282- 291. doi. =10.1016/j.marpolbul.2017.06.030.
Lee, S. G., Lee, D. H., Kim, Y., Chae, B. G., Kim, W. Y., and Woo, N. C., 2003. Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture-filling calcite. Appl. Geochem. 18, 135-143, doi.10.1016/S0883-2927(02)00071-9.
Liu, H., Guo, H., Pourret, O., and Liu, M., 2021. Geochemical characteristics of rare earth elements in sediments of the North China Plain: implication for sedimentation process. HAL Id, hal-03285967. doi.10.5281/zenodo.4311130.
López-González N., Borrego J., Carro B., Grande J. A., de la Torre M. L., and Valente T., 2012. Rare earth-element fractionation patterns in estuarine sediments as a consequence of acid mine drainage: A case study in SW Spain. Boletín Geológico y Minero, 123 (1), 55-64. ISSN: 0366-0176.
Matabane, D.L., Godeto, T.W., Mampa, R.M., and Ambushe, A.A., 2021. Sequential Extraction and Risk Assessment of Potentially Toxic Elements in River Sediments. Minerals, 11, 874, doi: 10.3390/min11080874.
Mayfield, D.B., and Fairbrother, A., 2014. Examination of rare earth element concentration patterns in freshwater fish tissues. Chemosphere 120C, 68-74, doi:10.1016/j.chemosphere.2014.06.010. doi. 10.1016/j.chemosphere.2014.06.010.
McLannan, S.M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Reviews in Mineral. Geoch, 21 (1), 169-200. doi.10.1515/9781501509032-010.
McLennan, S. M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4). doi.10.1029/2000GC000109.
Mihajlovic, J., and Rinklebe, J. 2018. Rare earth elements in German soils-A review. Chemosphere, 205, 514-523. doi.10.1016/j.chemosphere.2018.04.059.
Mihajlovic, J., Bauriegel, A., Stärk, H. J., Roßkopf, N., Zeitz, J., Milbert, G., and Rinklebe, J., 2019. Rare earth elements in soil profiles of various ecosystems across Germany. Appl. Geochem, 102, 197-217. doi.10.1016/j.apgeochem.2019.02.002.
Mohebi, A., Behzadi, M., Miranjad, H., and Taghizadeh, H., 2013. Identification of alteration halos associated with porphyry copper ore formation in Henza mountain using ASTER images. Iran Remote Sensing and GIS, 5, 53-64, doi.10.1016/j.jseaes.2011.07.017. (In Persian).
Monterroso, C., Rodríguez, F., Chaves, R., Diez, J., Becerra-Castro, C., Kidd, P.S., and Macías, F., 2014. Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl. Geochemistry, 44, 3–11. doi.10.1016/j.apgeochem.2013.09.001.
Montes-Avila, I., Espinosa-Serrano, E., Castro-Larragoitia, J., Lázaro, I., and Cardona, A., 2018. Chemical mobility of inorganic elements in stream sediments of a semiarid zone impacted by ancient mine residues Appl. Geochemistry, 100, 8-21. doi.10.1016/j.apgeochem.2018.11.002.
Nabizadeh, A., 2018. Evaluation of the environmental effects and economic potential of Dar-e-Allo mine waste rock dumps; Master's thesis, Shahid Bahonar University of Kerman, 201 p. (In Persian).
Narwal, R. P., Singh, B. R., and Salbu, B., 1999. Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal –rich soils studied by parallel and sequential extractions. Commun Soil Sci Plant Anal, 30, 1209-1230. 10.1080/00103629909370279.
Nemati, K., Abu Bakar, N.C., Abas, M.R., and Sobhanzadeh, E., 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater, 192, 402-410. doi.10.1016/j.jhazmat.2011.05.039 .
Nieto, J.M., Sarmiento, A.M., Canovas, C.R., Olias, M., and Ayora, C., 2013. Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Environ. Sci. Pollut. Res, 20, 7509–7519. doi.10.1007/s11356-013-1634-9 .
Olías, M., Cerón, J.C., Fernández, I., and De la Rosa, J., 2005. Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain). Environ. Pollut, 135 (1), 53–64. doi.10.1016/j.envpol.2004.10.014.
Owor, M., Hartwig, T., Muwanga, A., Zachmann, D., and Pohl, W., 2006. Impact of tailings from the Kilembe copper mining district on Lake George, Uganda. Environ. Geol, 51, 1065–1075. doi.10.1007/s00254-006-0398-7.
Oyeyiola, A.O., Olayinka, K.O., and Alo, B. I., 2011. Comparison of three sequential extraction protocols for the fractionation of potentially toxic metals in coastal sediments. Environ. Monit. Assess, 172, 319–327. doi.10.1007/s10661-010-1336-4 .
Perez-Lopez, R., Delgado, J., Nieto, J.M., and Marquez-Garcia, B., 2010. Rare earth element geochemistry of sulphide weathering in the Sao Domingos mine area (Iberian Pyrite Belt): A proxy for fluid–rock interaction and ancient mining pollution. Chem. Geol, 276(1–2), 29-40. doi.10.1016/j.chemgeo.2010.05.018.
Pérez-López, R., Nieto, J.M., De la Rosa, J., and Bolívar, J.P., 2015. Environmental tracers for elucidating the weathering process in a phosphogypsum disposal site: implications for restoration. J. Hydrol, 559, 1313–1323. doi.10.1016/j.jhydrol.2015.08.056.
Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanetta, M.L., and Oro, A.A., 1985. Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In: Lakkas TD (Ed.). Heavy Metals in the Environment, CEP Consultants, Edinburgh, 2. doi.10.1051/e3sconf/20130116001 .
Pourret, O., and Tuduri, J., 2017. Continental shelves as potential resource of rare 609 earth elements. Sci. Rep, 7, 585. doi.10.1038/s41598-017-06380-z.
Protano, G., and Riccobono, F., 2002. High contents of rare earth elements (REE) in stream waters of a Cu–Pb–Zn mining area. Environ. Pollut, 117, 499–514. doi.10.1016/s0269-7491(01)00173-7 .
Quevauviller, Ph., 1995. Quality Assurance in Environmental Monitoring, Sampling and Sample Pretreatment. Edt, Published jointly by VCH Verlagsgesellschaft mbH. Weinheim (Federal Republic of Germany) VCH Publishers, Inc, New York, NY (USA), 321 p.
Randive, K., Kumar, J.V., Bhondwe, A., and Lanjewar, S., 2014. Understanding the Behaviour of Rare Earth Elements in Minerals and Rocks. Gond. Geol. Mag, 29(1 and 2), 29-37.
Rudnick, R. L., and Gao, S., 2003. Composition of the Continental Crust. Treatise Geochem, 3, 1-64, doi:10.1016/B0-08-043751-6/03016-4. doi.10.1016/B0-08-043751-6/03016-4.
Rumah, H.T., Salihu, L., and Alhaji, B.B., 2017. Evaluation of Heavy Metals in Soil Using Modified BCR Sequential Extraction. Int. J. Miner. Process, 2, 79-82. doi.10.11648/j.ijmpem.20170205.13.
Salbu, B., Krekling, T., and Oughton, D.H., 1998. Characterization of radioactive particles in the environment. Anlst, 123, 843-849. doi.10.1039/A800314I.
Saleem, M., Iqbal, J., Akhter, G., and Shah, M.H., 2017. Fractionation, bioavailability, contamination and environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. J. Geochem. Explor, doi:10.1016/j. gexplo.2017.11.002.doi.10.1016/j. gexplo.2017.11.002.
Salehian, M., 2009. Mineralogical, geochemical and fluid inclusion studies in Da-e-Allo porphyry copper deposit, south of Kerman. Master's thesis of Tarbiat Modares University, 222 pages. (In Persian).
Shen, J., Liu, E., Zhu, Y., Hu, S., and Qu, W., 2007. Distribution and chemical fractionation of heavy metals in recent sediments from Lake Taihu, China. Hydrobiologia, 581, 141–150. doi. 10.1007/978-1-4020-6158-5_16.
Smedley, P.L., 1991. The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochim. Cosmochim. Acta, 55, 2767–2779. doi.10.1016/0016-7037(91)90443-9.
Soyol-Erdene, T.O., Valente, J.A., Grande, M.L., and Torre, D.L., 2018. Mineralogical controls on mobility of rare earth elements in acid mine drainage environments. CHEM 21243, doi: 10.1016/j.chemosphere, 2018.04.095.
Taylor, S. R., and McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Boston, 312 pp.
Thompson, A., and Goyne, K.W., 2012. Introduction to the Sorption of Chemical Constituents in Soils. Nature Education Knowledge 3(6):15. Avaliable on:
Verplanck, P.L., Nordstrom, D.K., Taylor, H.E., and Kimball, B.A., 2004. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Appl. Geochem, 19, 1339– 1354. doi.10.1016/j.apgeochem.2004.01.016.
Wang, L., Han, X., Liang, T., Guo, Q., Li, J., Dai, L., and Ding, S., 2018. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China. Chemosphere, 217, 851-857. doi.10.1016/j.chemosphere.2018.11.060 .
Worrall, F., and Pearson, D. G., 2001a. The development of acidic groundwaters in coal-bearing strata: Part I. Rare earth element fingerprinting. Appl. Geochem, 16, 1465– 1480. doi.10.1016/S0883-2927(01)00018-X.
Worrall, F., and Pearson, D. G., 2001b. Water- rock interaction in an acidic mine discharge as indicated by rare earth element patterns. GCA, 65, 3027-3040. doi.10.1016/S0016-7037(01)00662-7.
Xu, N., Morgan, B., W., and Rate, A., 2018. From source to sink: Rare-earth elements trace the legacy of sulfuric dredge spoils on estuarine sediments. Sci. Total Environ, 1537-1549. doi. 10.1016/j.scitotenv.2018.04.398.
Yan, W.B., Mahmood, Q., Peng, D.L., Fu, W.J., Chen, T., and Wang, Y., 2015. The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead–zinc mine in Southeastern China. Soil Tillage Res, 153, 120–130. doi. 10.1016/j.still.2015.05.013.
Zolanj, S., Dimitrijevic, M.N., Cvetic, S., and Dimitrijevic, M.N., 1972. Geological Map of Sarduiyeh, 1: 100,000 Series Sheet 7448. Ministery of Economy, Geological Survey of Iran.