Document Type : Original Research Paper

Authors

1 Department of Geology, Faculty of Science, Alborz Payame Noor University, Karaj, Iran

2 Applied Geological Research Center, Geological Survey of Iran, Karaj, Iran

3 Department of Exploration, Iranian Mines and Mining Industries Development and Renovation Organization (IMIDRO), Tehran, Iran

4 Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, West Branch, Tehran, Iran

Abstract

The Sarkuh Porphyry Copper deposit is located about 6 km southwest of Sarcheshmeh porphyry copper deposit. Alterations in the region include advanced potassic, propylitic, phyllic and argillic. Copper mineralization is mainly associated with porphyry granodiorite mass. Minerals include chalcopyrite, pyrite, magnetite and some molybdenite. Fluid inclusion studies were performed on quartz from the sulfide viens of the potassic fraction and showed that the main mineralization phase was present with a homogenization temperature between 250 and 527 ° C, salinity between 13.6 and 52.9 wt٪ NaCl, has a high salinity in Sarkuh deposit (Orthomagmatic phase and hypogene mineralization). The homogenization temperature in the late stages of the receding phase (convective phase and the influence of atmospheric waters in the hydrothermal cycle) is around 132 to 165 degrees Celsius and its salinity is 0.005 to 4.74% equivalent to the weight of NaCl. The observed salinity variation can be attributed to the boiling event. The investigation of sulfur isotope composition on pyrite and chalcopyrite minerals in Sarkoh deposit was between +1 and 2.7‰, which indicates the magmatic source of sulfur. The stable oxygen isotope data on quartz veins, show positive range between 7.6 to +9.3‰ with an average of +8.5, indicates a magmatic source for hydrothermal fluids. Also, due to the limited range of sulfur isotopic composition, it can be concluded that the isotopic composition of sulfur has not undergone changes or contamination by other sources of sulfur, or the mixing of magmatic fluid with other sources has been very insignificant. Isotopic thermometry shows the temperature of 315°C and 476°C for the pair of pyrite-chalcopyrite minerals.

Keywords

Main Subjects

Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Science, 94:401-419. https://doi.org/10.1007/s00531-005-0481-4.
Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L.M., and Hou, Z., 2015. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran. Constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore geology reviews,70: 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003.
Alimohammadi, M., Alirezaei S., and Kontak, D.J., 2015. Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore geology reviews, 70: 290-304. https://doi.org/10.1016/j.oregeorev.2015.04.010.
Allen, M.B., Jackson, J., and Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23(2): 1-16. https://doi.org/10.1029/2003TC001530.
Audétat, A., Pettke, T., Heinrich, C., and Bodnar, R., 2008. The composition of magmatic hydrothermal fluids in barren versus mineralized intrusions. Economic Geology, 103(5): 877–908. https://doi.org/10.2113/gsecongeo.103.5.877.
Ayuso, R. A., Barton, M. D., Blakely, R. J., Bodnar, R. J., Dilles, J. H., Gray, F., Graybeal, F. T., Mars, J. L., McPhee, D., Seal II R. R., Taylor, R. D., and Vikre P. G., 2010. Geological Survey Scientific Investigations Report 5070- B., 2010. Porphyry copper deposit model, chapter B of Mineral deposit models for resource assessment.U.S. Geological Survey, 169 p. https://doi.org/10.3133/sir20105070B.
Becker, S.P., Fall, A., Bodnar, J.R., 2008. Synthetic fluid inclusions. XVII.3 PVTX Properties of high salinity H2O-NaCl solutions (>30wt% NaCl): Application to fluid inclusions that homogenize by Halite disappearance from Porphyry Copper and other hydrothermal ore deposits2., 2008. Economic Geology, 103(3): 539-554. http://doi.org/10.2113/gsecongeo.103.3.539.
Bindeman, I., 2008. Oxygen isotopes in mantle and crustal mag- mas as revealed by single crystal analysis. Reviews in Mineral- ogy and Geochemistry, 69(1), 445 – 478. https://doi.org/10.2138/rmg.2008.69.12.
Bodnar, R. J., 1983. A method of calculating fluid inclusion vol- umes based on vapor bubble diameters and PVTX properties of inclusion fluids. Economic Geology and the Bulletin of the Society of Economic Geologists, 78(3), 535 – 542. https://doi.org/10.2113/gsecongeo.78.3.535.
Bodnar, R. J., Burnham, C. W., and Sterner, S. M., 1985.  Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 49 (9): 1861–1873. https://doi.org/10.1016/0016-7037(85)90081-X.
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57 (3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-A.
Bodnar, R.J., 1994. Synthetic fluid inclusions: XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt % NaCl solution: Geochimica et Cosmochimica Act, 58 (3): 1053–1063. https://doi.org/10.1016/0016-7037(94)90571-1.
Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D., and Steele-MacInnis, M., 2014. Fluid inclusions in hydrothermal ore deposits. (2014). In: Turekian, H.D.H.K., Ed., Treatise on Geochemistry, 2nd Edition, Elsevier, Oxford, 119-142. http://dx.doi.org/10.1016/b978-0-08-095975-7.01105-0.
Bouzari, F., and Clark, A.H., 2006. Prograde evolution and geothermal affinities of a major porphyry copper deposit: The Cerro Colorado hypogene protore, I Region, northern Chile.Economic Geology, 101(1): 95–134. DOI:10.2113/101.1.95
Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74 (11-12): 1390–1393. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/74/11-12/1390/42220/FLINCOR-a- microcomputer-program-for-the-reduction.
Calagari, A. A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic phyllic alteration zones of the porphyry cop- per deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7), 767–780. https://doi.org/10.1016/S1367-9120(02)00083-4.
Clayton, R.N., O'Neil, J.R.., and Mayeda, T.K., 1972. Oxygen isotope exchange between quartz and water. J. Geophys. Res, 77 (17):  3057-3067.https://doi.org/10.1029/JB077i017p03057.
Cline, J.S., and Bodnar, R.J., 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research, 96 (B5): 8113–8126.https://doi.org/10.1029/91JB00053.
Cooke, D.R., Hollings, P., Wilkinson, J.J., and Tosdal, R.M., 2014. Geochemistry of porphyrydeposits, Chapter 13.14, Treatise on Geochemistry, 2nd edition: 357–381. https://www.researchgate.net/profile/Richard-Tosdal/publication/286377737_Geochemistry_of_Porphyry_Deposits/links/567ca73a08ae051f9ae1b0ca/Geochemistry-of-Porphyry-Deposits.pdf
Dimitrijevic, M.D., 1973. Exploration for ore deposit in Kerman region. Kerman Project, Geological Survey of Iran, Tehran, Report2: 87pp.
Einaudi, M.T., Hedenquist, J.W., and Inan, E.E., 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transition from porphyry to epithermal environments. Soc. Economic Geology, Spec. Pub, 10: 285–313. https://pyrite.utah.edu/fieldtrips/SEGF11USA-2013/Readings/EinaudiHedenquist2003sulfidation.pdf.
Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment: Economic Geology, 94 (8): 1193–1211. https://doi.org/10.2113/gsecongeo.94.8.1193.
Golestani, M., Karimpour, M.H., Malekzadeh Shafaroudi, A., and Heidarian Shahri, M.R., 2017. Characteristics of fluid inclusions and sulfur isotope in porphyry copper ore deposit, northwest of Shahr-Babak, Geology, Journal of Economic Geology, 9(1):25-55. https://DOI:10.22067/ECONG.V9I1.60709. (In Persian).
Gustafson, L. B., and Hunt, J. P., 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology and the Bulletin of the Society of Economic Geologists, 70(5), 857–912. https://doi.org/10.2113/gsecongeo.70.5.857.
Haas J.L., 1976. Physical properties of the coexisting phases and thermodynamic properties of the H2O component in boiling NaCl solutions. U.S. Geological Survey Bulletin 1421–A, 73 p. https://pubs.usgs.gov/bul/1421a/report.pdf.
Hall, D.L., Sterner, S.M., and Bodnar, R.J., 1988. Freezing point depression of NaCl–KCl– H2O solutions. Economic Geology, 83 (1): 197–202. https://doi.org/10.2113/gsecongeo.83.1.197.
Hoefs, J., 2015. Stable Isotope Geochemistry, (7th edition). Springer International Publishing, Heidelberg, 402 pp.
Hosseini, M. R., Ghaderi, M., Alirezaei, S., and Sun, W., 2017. Geo- logical characteristics and geochronology of the Takht-e-Gonbad copper deposit, SE Iran: A variant of porphyry type deposits. Ore Geology Reviews, 86, 440 – 458. https://doi.org/10.1016/j.oregeorev.2017.03.003.
Jazi, M.A., Karimpour, M.H., and Malekzadeh Shafaroudi, A., 2015. Mineralogy studies, Geochemistry, Involved fluids and stable isotope of Cu-Zn-As sulfur deposit in carbonate host rock (northeast of Anarak), Geology, Journal of Economic Geology, 7(2): 179-202.https://doi.org/10.22067/econg.v7i2.46069 (In Persian with English abstract).
Komeili, S., Bagheri, H., Asadi Harooni, H., Khalili, M., and Ayati, F., 2014. Petrography  and mineral  chemistry  of  alteration  zones  in  the  Kahang  porphyry  Cu-Mo  deposit  (Northeast  of Isfahan). Iranian Journal of Petrology, 19 (5): 1-20. https://ijp.ui.ac.ir/article_16180_7ccf65b80d1c9dc28895dddcbc0ae83b.pdf?lang=en (In Persian).
Le Maitre, R. W., 1989. A classification of igneous rocks and the glossary of terms. I. U. G. S. Blackwell Sci. Pub., 193 p.
Maani jou, M., Mostaghimi, M., Abdollahi Riseh, M., and Sepahi Goruh, A.A., 2012. Systematic studies of stable isotopes of sulfur and fluid inclusions in different vein groups of Sarcheshmeh porphyry copper deposit, based on new data, Journal of Economic Geology, 2(4): 217-239.https://doi.org/10.22067/econg.v4i2.16492 (In Persian).
Malekshahi, S., Rassa, I., Rashid Nezhad Omran, N., and Lotfi, M., 2018. Comparison of the results of satellite image processing for extraction of alterations with mineralogy and field studies in Sarkuh Porphyry Copper Deposit. Iranian Journal of Remote Sensing and GIS, 10, 4:40-63. (In Persian with English abstract).
Malekshahi, S., Rassa, I., Rashidnejad Omran, N., and Lotfi, M., 2021. Geology, fluid inclusion, S and O stable isotope compositions and Sm-Nd systematics of Sarkuh porphyry Cu deposit, Kerman copper belt, SE Iran, Neues Jahrbuch für Mineralogie - Abhandlungen Band 197 Heft 1: 29–47, https://doi.org/10.1127/njma/2020/0213.
Malekshahi, S., 2014. The analysis of economic geology,geochemistry and the model of deposit
formation of Sarkuh porphyry copper (South west of Sarcheshmeh copper mine), Ph.D. thesis, Faculty of Basic Sciences, Islamic Azad University, Tehran Science and Research Unit, 302 p. (in Persian).
Meyer, C., 1965. An early potassic type of wall rock alteration at Butte, Montana: American Mineralogist, 50 (10): 1717-1722.
Mirnejad, H., Mathur, R., Hassanzadeh, J., Shafie, B., and Nourali, S., 2013. Linking Cu mineralization to host porphyry emplace- ment: Re-Os age of molybdenites versus U-Pb ages of Zircons and sulfur isotope compositions of pyrite and chalcopyrite from the Iju and Sarkuh porphyry deposites in southeast Iran. Eco- nomic Geology and the Bulletin of the Society of Economic Geol- ogists, 108, 861–870. https://doi.org/10.2113/econgeo.108.4.861.
Mohajjel, M., Fergusson, CL., and Sahandi, M. R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J. Asian Earth Sci, 21(4): 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4.
Mohammaddoost, H., Ghaderi, M., Kumar, T. V., Hassanzadeh, J., Alirezaei, S., Stein, H. J., Babu, E.V.S. S. K., 2017. Zircon U–Pb and molybdenite Re–Os geochronology, with S isotopic composition of sulfides from the Chah-Firouzeh porphyry Cu deposit, Kerman Cenozoic arc, SE Iran, Ore Geol.Rev, 88: 384–399. https://doi.org/10.1016/j.oregeorev.2017.05.023.
Nash, J.T., 1976. Fluid inclusion petrology - data from porphyry copper deposits and applications to exploration. U.S. Geological Survey. Prof. Pap. 907-D, 16 p. https://doi.org/10.3133/pp907D.
Nedimovic, R., 1973. Exploration for Ore Deposits in Kerman Region. Geological Survey of Iran, Report 53: 247.
Nourali. S., and Mirnejad. H., 2012. Hydrothermal evolution of the Sar-Kuh porphyry copper deposit, Kerman, Iran: a fluid inclusion and sulfur isotope investigation. J Geopersia 2(2):93–107.
Ohmoto, H., and Rye, R.O., 1979.  Isotopes of sulfur and carbon. In: Geochemistryof hydrothermal ore deposits, 2nd ed. Holt Rinehart and Winston, New York, 435- 486. https://azgs.arizona.edu/azgeobib/isotopes-sulphur-and-carbon-barnes-hl-ed-geochemistry-hydrothermal-ore-deposits-second.
Parvin pour. F., Rasa.I., and Ghorbani. M., 2006. The secret of porphyry copper deposits in Kerman's copper belt with a view on Abder-Dahj subzone. The 5th Mining Engineering Student Conference. .(In Persian).
Pass, H.E., Cooke, D.R., Davidson, G., Maas, R., Dipple, G., Rees, C., Ferreira, L., Taylo, r C., Deyell, C.L., 2014. Isotope geochemistry of the Northeast Zone, Mount Polley Alkc Cu-Au-Ag Porphyry Deposit, British Columbia: a case for carbonate assimilation. Economic Geology, 109: 859–890. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.917.6820&rep=rep1&type=pdf.
Roedder, E., 1984. Reviews in Mineralogy: Vol. 12. Fluid Inclu- sions. https://doi.org/10.1515/9781501508271.
Rusk, B.G., Reed, M.H., Dilles, J.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana: Economic Geology, 103(2): 307-334.https://doi.org/10.2113/gsecongeo.103.2.307.
Rye, R.O., 2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215(1-4): 5–36. https://doi.org/10.1016/j.chemgeo.2004.06.034.
Seedorff, E., Dills, J.H., Proffett, J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, D.A., and Barton, M., 2005. Porphyry deposits—Characteristics and origin of hypogene features: Society of Economic Geologists, Economic Geology 100th Anniversary Volume, 1905–2005, 251–298. https://www.geo.arizona.edu/~mdbarton/MDB_papers_pdf/Seedorff[05_PorphDeps_EG100thAV.pdf].
Shafiei Bafti, B., Niedermann, S., Sośnicka, M., and Gleeson, S.A., 2022. Microthemometry and noble gas isotope analysis of magmatic fluid inclusions in the Kerman porphyry Cu deposits, Iran: constraints on the source of ore-forming fluids:International Journal for Geology, Mineralogy and Geochemistry of Mineral Deposits (Mineralium Deposite).  57, 155–185. https://link.springer.com/article/10.1007/s00126-021-01041-8.
Shafiei, B., Haschke, M., and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44: 265-283. https://doi.org/10.1007/s00126-008-0216-0.
Shafiei, B., Shahabpour J., and Haschke, M., 2008.  Transition from Paleogene normal calc-alkaline to Neogene adakitic-like plutonism and Cu- metallogeny in the Kerman porphyry copper belt: Response to Neogene crustal thickening. J. Sci. I. R. Iran ,19 (1): 67-84. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=108136.
Shepherd, T.J., Rankin, A.H., and Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie and Son, Glasgow, 239 pp.
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology 105 (1), 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
Steele-MacInnis, M., Lecumberri-Sanchez, P., Bodnar, R.J., 2012. HOKIEFLINCS_H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Computers & Geosciences, 49: 334-337. Doi: 10.1016/j.cageo.2012.01.022.
Taghipour, N., and Derani, M., 2013. Geochemistry of stable isotopes of sulfur and oxygen of sulfide and sulfate minerals of Parkam porphyry copper deposit in Shahre Babak, Kerman province . Journal of Advanced Applied Geology, 8, 61–70 (In Persian).
Ulrich, T., Günther, D., and Heinrich, C.A., 2001. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 96 (8): 1743–1774. https://doi.org/10.2113/gsecongeo.96.8.1743.
Von Quadt, A., Erni, M., Martinek, K., Moll, M., Peytcheva, I., and Heinrich, C.A., 2011. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermalsystems. Geology, 39 (8): 731–734. https://doi.org/10.1130/G31966.1.
Zarnab Exploration consulting engineers., 2010. Geological and alteration studies in the Sarkuh area (1:1000), (In Persian).  National Iranian Copper Industries Co, 104 pp.
Zimmerman, A., Stein, H. J., Morgan, J. W., Markey, R. J., and Wa- tanabe, Y., 2014. Re–Os geochronology of the El Salvador por- phyry Cu–Mo deposit, Chile: Tracking analytical improvements in accuracy and precision over the past decade. Geochimica et Cosmochimica Acta, 131, 13–32. https://doi.org/10.1016/j.gca.2014.01.016.
Zimmerman, A., Stein, H.J., Hannah, J.L., Kozˇelj, D., Bogdanov, K., and Berza, T., 2008. Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re–Os molybdenite ages. Mineralium Deposita, 43: 1–21.  https://doi.org/10.1007/s00126-007-0149-z.