Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran

2 School of Earth Sciences, China University of Geosciences-Wuhan, Wuhan, China

Abstract

The Gano bauxite deposit is located 90 km northeast of Semnan city in the eastern Alborz Mountains, northern Iran. The bauxite ores occur as stratiform discrete lenses with a length of 6 km and thickness of 2–20 m along the contact between carbonates of the Elika Formation and shale, sandstone, siltstone, and coal of the Shemshak Formation. Mineralogical analyses revealed that the bauxite ores consist of diaspore, hematite, kaolinite, chlorite, anatase, illite, zunyite, goethite, quartz, and dolomite minerals. Fluctuations of the groundwater table level, acidic atmospheric waters, and an increase in pH of the weathering solutions close to carbonate bedrocks played an important role in the concentration of Fe-poor ores in the upper parts and Fe-rich ores in the lower parts of the studied profile. An increase in oxidation, the possible presentence of secondary phosphate minerals, fluctuations of the groundwater table level, and the role of carbonate bedrock as an active buffer played an important role in the extent of Ce anomaly in the ores (0.79–12.25). The pH variations of weathering solutions, fluctuations of the groundwater table level, the role of carbonate bedrock as a geochemical barrier, and simultaneous precipitation of Fe-bearing minerals and preferential scavenging of LREE(La–Eu) by hematite played an important role in the distribution and fractionation of rare earth elements in the bauxite ores. According to geochemical considerations (Eu/Eu* vs. TiO2/Al2O3 and Sm/Nd bivariate diagrams), the Gano bauxite deposit probably derived from the weathering of intermediate igneous rocks.

Keywords

Main Subjects

Abedini, A., Calagari, A.A., and Rezaei Azizi, M., 2018. The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: Evidence from the Kanigorgeh deposit, NW Iran, J. Geochem. Explor. 186, 129–142. https://doi.org/10.1016/j.gexplo.2017.12.007.
Abedini, A., Mongelli, G., and Khosravi, M., 2021. Geochemical constraints on the middle Triassic Kani Zarrineh karst bauxite deposit, Irano–Himalayan belt, NW Iran: Implications for elemental fractionation and parental affinity, Ore Geol. Rev. 133, 104099. https://doi.org/10.1016/j.oregeorev.2021.104099.
Abedini, A., Mongelli, G., and Khosravi, M., 2022. Geochemistry of the early Jurassic Soleiman Kandi karst bauxite deposit, Irano–Himalayan belt, NW Iran: Constraints on bauxite genesis and the distribution of critical raw materials, J. Geochem. Explor. 241, 107056. https://doi.org/10.1016/j.gexplo.2022.107056.
Ahmadnejad, F., and Mongelli, G., 2022. Geology, geochemistry, and genesis of REY minerals of the late Cretaceous karst bauxite deposits, Zagros Simply Folded Belt, SW Iran: Constraints on the ore-forming process J. Geochem. Explor. 240, 107030. https://doi.org/10.1016/j.gexplo.2022.107030.
Ahmadnejad, F., Zamanian, H., Taghipour, B., Zarasvandi, A., Buccione, R., and Ellahi, S.S., 2017. Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: Implications for ore genesis, rare earth elements fractionation and parental affinity, Ore Geol. Rev. 86, 755–783. https://doi.org/10.1016/j.oregeorev.2017.04.006.
Babechuk, M.G., Widdowson, M., and Kamber, B.S., 2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India, Chem. Geol. 363, 56–75. https://doi.org/10.1016/j.chemgeo.2013.10.027.
Bárdossy, G., 1982. Karst bauxites. In: Elsevier Scientific, Amsterdam, 441 p.
Bárdossy, G., and Aleva, G.J.J., 1990. Lateritic Bauxites. Elsevier Scientific Publication, Amsterdam, 646 p.
Beyala, V.K.K., Onana, V.L., Priso, E.N.E., Parisot, J.C., and Ekodeck, G.E., 2009. Behaviour of REE and mass balance calculations in a lateritic profile over chlorite schists in South Cameroon, Chem. Erde. 69, 61–73. https://doi.org/10.1016/j.chemer.2008.08.003.
Braun, J.J., Pagel, M., Muller, J.P., Bilong, P., Michard, A., and Guillet, B., 1990. Ce anomalies in lateritic profiles, Geochim. Cosmochim. Acta. 54, 781–795. https://doi.org/10.1016/0016-7037(90)90373-S.
Braun, J.J., Viers, J., Dupre, B., Polve, M., Ndam, J., and Muller, J.P., 1998. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions, Geochim. Cosmochim. Acta 62, 273–299. https://doi.org/10.1016/S0016-7037(97)00344-X.
Calagari, A.A., Farahani, F.K., and Abedini, A., 2015. Geochemical characteristics of a laterite: The Jurassic Zan deposit, Iran, Acta Geodyn. et Geomater. 12, 67–77.
Cantrell, K.J., and Byrne, R.H., 1987. Rare earth element complexation by carbonate and oxalate ions, Geochim. Cosmochim. Acta. 51, 597–605. https://doi.org/10.1016/0016-7037(87)90072-X.
Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales, Chem. Geol. 104(1–4), 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.
Coppin, F., Berger, G., Castet, S., and Loubet, M., 2002. Sorption of lanthanides on smectite and kaolinite, Chem. Geol. 182, 57–68. https://doi.org/10.1016/S0009-2541(01)00283-2.
Crinci, J., and Jurkowic, I., 1990. Rare earth elements in Triassic bauxites of Croatia, Yugoslavia. Travaux, 19, 239–248. 
https://doi.org/10.3390/min11111260.
Deluca, F., Mongelli, G., Paternoster, M., and Zhu, Y., 2020. Rare earth elements distribution and geochemical behaviour in the volcanic groundwaters of Mount Vulture, southern Italy, Chem. Geol. 539, 119503. https://doi.org/10.1016/j.chemgeo.2020.119503.
Esmaeily, D., Rahimpour-Bonab, H., Esna-Ashari, A., and Kananian, A., 2010. Petrography and geochemistry of the Jajarm karst bauxite ore deposit, NE Iran: Implications for source rock material and ore genesis, Turk. J. Earth Sci. 19, 267–284. 
https://doi.org/10.3906/yer-0806-15.
Ghasemi, M., Abedini, A., and Calagari, A.A., 2019. Mineralogy and REEs geochemistry of the Zaraj-Sou bauxite deposit, southwest of Ramsar, north Iran. Iran, J. Crystallogr. Mineral. 27 (2), 295–306. http://ijcm.ir/article-1-1266-fa.html. (In Persian)
Hanilçi, N., 2013. Geological and geochemical evolution of the Bolkardagi bauxite deposits, Karaman, Turkey: Transformation from shale to bauxite, J. Geochem. Explor. 133, 118–137. https://doi.org/10.1016/j.gexplo.2013.04.004.
Iran Alumina Company, 2005. Final exploration report of the Gano bauxite, unpublished data. (In Persian)
Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., and Lyons, W.B., 1996. Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions, Earth Planet. Sci. Lett. 139, 305–319. https://doi.org/10.1016/0012-821X(96)00016-7.
Kangarani Farahani, F., Abedini, A., and Calagari, A.A., 2014b. Mineralogical and geochemical features of Triassic–Jurassic clayey laterite deposit in Derazkuh, west of Damghan, Semnan province, Appl. Sedimento. 1 (2), 51–67. https://www.magiran.com/paper/1238386. (In Persian)
Kangarani Farahani, F., Abedini, A., and Calagari, A.A., 2015. Mineralogy and geochemsitry of Kambelu lateriitc deposit, west of Damghan, Semnan province, J. Geosci. 24 (94), 349–358. https://www.gsjournal.ir/article_42963.html. (In Persian)
Kangarani Farahani, F., Calagari, A.A., and Abedini, A., 2014a. Geochemical characteristics of Shahbolaghi laterite deposit, southeast of Damavand, Tehran province, J. Geosci. 23 (92), 165–176. https://doi.org/10.22071/gsj.2014.43697. (In Persian)
Kiaeshkevarian, M., Calagari, A.A., and Shamanian, G., 2020. Geochemical and mineralogical features of karst bauxite deposits from the Alborz zone (Northern Iran): Implications for conditions of formation, behavior of trace and rare earth elements and parental affinity, Ore Geol. Rev. 125, 103691. https://doi.org/10.1016/j.oregeorev.2020.103691.
Lopez, J.M.G., Bauluz, B., Fernández-Nieto, C., and Oliete, A.Y., 2005. Factors controlling the trace element distribution in fine-grained rocks: The Albian kaolinite-rich deposits of the Oliete Basin (NE Spain), Chem. Geol. 214, 1–19.
Ma, J., Wei, G., Xu, Y., Long, W., and Sun, W., 2007. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China, Geochim. Cosmochim. Acta. 71, 3223–3237. https://doi.org/10.1016/j.gca.2007.03.035.
MacLean, W.H., Bonavia, F.F., and Sanna, G., 1997. Argillite debris converted to bauxite during karst weathering: Evidence from immobile elements geochemistry at the Olmedo deposit, Sardinia, Miner. Depos. 32, 607–616. https://doi.org/10.1007/s001260050126.
Mameli, P., Mongelli, G., and Dinelli, E., 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (western Sardinia, Italy): Insights on conditions of formation and parental affinity, Int. J. Earth Sci. 96, 887–902. https://doi.org/10.1007/s00531-006-0142-2.
Meyer, F.M., Happel, U., Hausberg, J., and Wiechowski, A., 2002. The geometry and anatomy of the Pijigaos bauxite deposit, Venezuela, Ore Geol. Rev. 20, 27–54. https://doi.org/10.1016/S0169-1368(02)00037-9.
Mongelli, G., Boni, M., Buccione, R., and Sinisi, R., 2014. Geochemistry of the Apulian karst bauxites (southern Italy): chemical fractionation and parental affinities, Ore Geol. Rev. 63, 9–21. https://doi.org/10.1016/j.oregeorev.2014.04.012.
Patino, L.C., Velbel, M.A., Price, J.R., and Wade, J.A., 2003. Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala, Chem. Geol. 202, 343–364. https://doi.org/10.1016/j.chemgeo.2003.01.002.
Radusinović, S., Jelenković, R., Pačevski, A., Simić, V., Božović, D., Holclajtner-Antunović, I., and Životić, D., 2017. Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area, Montenegro, Ore Geol. Rev. 80, 406–428.  https://doi.org/10.1016/j.oregeorev.2016.05.026.
Ronov, A.B., Balashov, Y.A., and Migdisov, A., 1967. Geochemistry of the rare earths in the sedimentary cycle, Geochem. Int. 4, 1–17.
Saidi, A., and Akbarpour, M., 1992. The 1:100,000 Geological map of Kiasar. Geological Survey of Iran. (In Persian)
Salamab-Ellahi, S., Taghipour, B., and Mongelli, G., 2019. Clayey bauxite from the Irano–Himalayan belt: Critical metals, provenance and palaeoclimate in the Upper Cretaceous Semirom ore deposit, Zagros Mountain, Iran, J. Asian Earth Sci. 172, 126–142. https://doi.org/10.1016/j.jseaes.2018.09.001.
Shahabi, S., 2021. Mineral chemistry, whole rock and isotopic geochemistry and petrogenesis of igneous rocks of Shemshak Formation in eastern and central Alborz zone, PhD dissertation, Shahrood University of Technology, 381 p. (In Persian)
Solar, J.M., and Lasaga, A.C., 2000. The Los Pijiguaos bauxite deposit (Venezuela): A compilation of field data and implications for the bauxitization process, J. S. Am. Earth Sci. 13, 47–65. https://doi.org/10.1016/S0895-9811(00)00007-9.
Stöcklin, J., 1968. Structural history and tectonics of Iran: A review, AAPG Bull., 52, 1229–1258.
Sun, S.S., and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geol. Soc. Spec. Publ., London, 313–345.
Tardy, Y., Kolbisek, B., and Paquet, H., 1990. Influence of Periatlantic climates and paleoclimates on the distribution and mineralogical composition of bauxites and ferricretes, Chem. Geol. 84, 179–182. https://doi.org/10.1016/0009-2541(90)90205-L.
Tardy, Y., Kolbisek, B., and Paquet, H., 1991. Mineralogical composition and geographical distribution old African and Brazilian periatlantic laterites. The influence of continental drift and tropical paleoclimates during the past 150 million years and implications for India and Australia, J. Afr. Earth Sci. 12, 283–295. https://doi.org/10.1016/0899-5362(91)90077-C.
Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: A new table, Geochim. Cosmochim. Acta. 196, 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2.
Taylor, S.R., and McLennan, S.M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford.
Taylor, S.R., and McLennan, S.M., 1995. The geochemical evolution of the continental crust, Rev. Geophys. 33, 241–265. 
https://doi.org/10.1029/95RG00262.
Viers, J., and Wasserburg, G.J., 2004. Behavior of Sm and Nd in a lateritic soil profile, Geochim. Cosmochim. Acta. 68(9), 2043–2054. https://doi.org/10.1016/j.gca.2003.10.034.
Wang, Q.F., Deng, J., Liu, X.F., Zhang, Q.Z., Sun, S.L., Jiang, C.Z., and Zhou, F., 2010. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China, J. Asian Earth Sci. 39, 701–712.
 https://doi.org/10.1016/j.jseaes.2010.05.005.
White, R.A., 2000. The behaviour of the rare earth elements in Ochreous mine drainage. Unpublished Ph.D. Thesis, University of Wales, Aberystwyth, UK.
Zamanian, H., Beiranvand, G., and Ahmadnejad, F., 2019. Mineralogy, geochemistry and the origin of the Bagoushi karst bauxite deposit, northwestern Fars province, Iran, J. Geosci. 28 (112), 269–280.  https://www.gsjournal.ir/article_92525.html. (In Persian)
Zarasvandi, A., Carranza, E.J.M., and Ellahi, S.S., 2012. Geological, geochemical, and mineralogical characteristics of the Mandan and Dehnow bauxite deposits, Zagros Fold Belt, Iran, Ore Geol. Rev. 48, 125–138. https://doi.org/10.1016/j.oregeorev.2012.02.010.
Zarasvandi, A., Zamanian, H., and Hejazi, E., 2010. Immobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains. Iran, J. Geochem. Explor. 107, 77–85. https://doi.org/10.1016/j.gexplo.2010.06.007.