Document Type : Original Research Paper

Authors

1 Department of Engineering Geology. Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran

2 Geology and Geophysics Department, Tehran Energy Consultants (TEC Co.), Tehran, Iran

3 Department of Geology, Pars Oil and Gas Company, Tehran, Iran

Abstract

Diagenetic processes in carbonate rocks can be considered as one of the most important factors influencing the inherent characteristics of this type of reservoir on a small as well as large scale. Considering the importance of knowing the mechanical characteristics of reservoir rocks in geomechanical modeling and its application in the exploitation and development of hydrocarbon fields, it is necessary to find out how lithological characteristics affect its rock mechanical behavior. In this study, the impact of two diagenetic processes (Dolomitization and Anhydrite cement) on the physical and mechanical characteristics (such as Uniaxial Compressive Strength, Young’s modulus, Cohesion, and Internal friction angle) of carbonate reservoirs of the Kangan Formation, are addressed. The evaluations have been done in two phases: i.e., lithological studies and rock mechanical tests. The results show that changes in mechanical properties are strongly influenced by diagenetic processes. The two main influential features on mechanical characteristics are dolomitization and anhydrite cementation, which strongly affect porosity, dominant pore type, and mineralogy. The results show that dolomitization in the studied samples has caused an increase in porosity and a decrease in strength and elasticity. While the presence of anhydrite has caused an improvement in the resistance characteristics with an opposite effect.

Keywords

Main Subjects

Abdideh, M., and Ghasemi, A., 2014. A comparison of various statistical and geostatistical methods in estimating the geomechanical properties of reservoir rocks. Petroleum Science and Technology, 32(9), 1058–1064.
Abdolmaleki, J., Tavakoli, V., and Asadi-Eskandar, A., 2016. Sedimentological and diagenetic controls on reservoir properties in the Permian–Triassic successions of Western Persian Gulf, Southern Iran. Journal of Petroleum Science and Engineering, 141, 90–113.
Afroogh, A., and Mehrabi, H., 2023. How geomechanical attributes control the morphology of stylolites in carbonate sequences? A case from Permian–Triassic gas reservoirs in the Persian Gulf. Geomechanics for Energy and the Environment, 33, 100424.
Alsharhan, A. S., 2006. sedimentological character and hydrocarbon parameters of the middle Permian to Early Triassic Khuff Formation, United Arab Emirates. GeoArabia, 11(3), 121–158.
ASTM International and American Society for Testing and Materials, 2004. Annual book of ASTM Standards.
Baechle, G. T., Colpaert, A., Eberli, G. P., and Weger, R. J., 2008. Effects of microporosity on sonic velocity in carbonate rocks. The Leading Edge, 27(8), 1012–1018.
Dickson, J. A. D., 1965. A modified staining technique for carbonates in thin section. Nature, 205(4971), 587.
Dunham, R.R., 1962. Classification of Carbonate Rocks According to Depositional Texture in: Classification of Carbonate Rocks (W.E. Ham, Editor). Mem. Am. Assoc. Petrol. Geol. Pp. 183.
Eberli, G. P., Baechle, G. T., Anselmetti, F. S., and Incze, M. L., 2003. Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge, 22(7), 654–660.
Edimann, K., Somerville, J. M., Smart, B. G. D., Hamilton, S. A., and Crawford, B. R., 1998. Predicting rock mechanical properties from wireline porosities. SPE/ISRM Rock Mechanics in Petroleum Engineering.
Ehrenberg, S. N., Nadeau, P. H., and Aqrawi, A. A. M., 2007. A comparison of Khuff and Arab reservoir potential throughout the Middle East. AAPG Bulletin, 91(3), 275–286.
Enayati-Bidgoli, A. H., and Rahimpour-Bonab, H. 2016. A geological based reservoir zonation scheme in a sequence stratigraphic framework: A case study from the Permo-Triassic gas reservoirs, Offshore Iran. Marine and Petroleum Geology, 73, 36–58.
Enayati-Bidgoli, A. H., Rahimpour-Bonab, H., and Mehrabi, H., 2014. flow unit characterisation in the Permian-Triassic carbonate reservoir succession at South Pars Gas field, offshore Iran. Journal of Petroleum Geology, 37(3), 205–230.
Eshkalak, M. O., Mohaghegh, S. D., and Esmaili, S., 2014. Geomechanical properties of unconventional shale reservoirs. Journal of Petroleum Engineering, 2014.
Esrafili-Dizaji, B., and Harchegani, F. K., 2011. Persia: Land of Black Gold.GEO ExPro December 2011. pp. 30-34.DOI: 10.13140/2.1.4264.0001.
Esrafili-Dizaji, B., and Rahimpour-Bonab, H., 2009. Effects of depositional and diagenetic characteristics on carbonate reservoir quality: a case study from the South Pars gas field in the Persian Gulf. Petroleum Geoscience, 15(4), 325–344.
Esrafili-Dizaji, B., Harchegani, F. K., Rahimpour-Bonab, H., and Kamali, M. R., 2013. 10 Controls on Reservoir Quality in the Early Triassic KanganFormation, Iran.In book: Permo-Triassic Sequence of the Arabian Plate (pp.219-245)Chapter: 10. Publisher: EAGEE. ditors: Michael Pöppelreiter.
Flügel, E., 2013. Microfacies of carbonate rocks: analysis, interpretation and application. Springer-Verlag, Berlin, 996 p.
Folk, R. L., 1962. Spectral subdivision of limestone types. In: W. E. Ham, Ed., Classification of Carbonates Rocks. A Symposium, Tulsa, OK, American Association of Petroleum Geologist Memoirs, 1962, pp. 62-84.
Fournier, F., and Borgomano, J., 2009. Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks Critical porosity of microporous carbonates. Geophysics, 74(2), E93–E109.
Fournier, F., Leonide, P., Biscarrat, K., Gallois, A., Borgomano, J., and Foubert, A., 2011. Elastic properties of microporous cemented grainstones. Geophysics, 76(6), E211–E226.
García, R. A., Saavedra, N. F., Calderón-Carrillo, Z., and Mateus, D., 2008. Development of experimental correlations between indentation parameters and unconfined compressive strength (UCS) values in shale samples. CTyF - Ciencia, Tecnologia y Futuro, 3(4).
Gharechelou, S., Amini, A., Bohloli, B., and Swennen, R., 2020a. Relationship between the sedimentary microfacies and geomechanical behavior of the Asmari Formation carbonates, southwestern Iran. Marine and Petroleum Geology, 116, 104306.
Gharechelou, S., Amini, A., Bohloli, B., Swennen, R., Nikandish, A., and Farajpour, V., 2020b. Distribution of geomechanical units constrained by sequence stratigraphic framework: Useful data improving reservoir characterization. Marine and Petroleum Geology, 117, 104398.
Hudson, R., and Ulusay, J. A., 2007. The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. Springer.
Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M., and Monibi, S., 2006. Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia, 11(2), 75–176.
Jafarian, A., Fallah-Bagtash, R., Mattern, F., and Heubeck, C., 2017. Reservoir quality along a homoclinal carbonate ramp deposit: The Permian Upper Dalan Formation, South Pars Field, Persian Gulf Basin. Marine and Petroleum Geology, 88, 587–604.
Jafarian, A., Javanbakht, M., Koeshidayatullah, A., Pimentel, N., Hersi, O. S., Yahyaei, A., and Beigi, M., 2018. Paleoenvironmental, diagenetic, and eustatic controls on the Permo-Triassic carbonate–evaporite reservoir quality, Upper Dalan and Kangan formations, Lavan Gas Field, Zagros Basin. Geological Journal, 53(4), 1442–1457.
Janjuhah, H. T., Alansari, A., and Vintaned, J. A. G., 2019. Quantification of microporosity and its effect on permeability and acoustic velocity in Miocene carbonates, Central Luconia, offshore Sarawak, Malaysia. Journal of Petroleum Science and Engineering, 175, 108–119.
Kashfi, M. S., 1992. Geology of the Permian “Super-Giant” gas reservoirs in the greater Persian gulf area. Journal of Petroleum Geology, 15(3), 465–480.
Koehrer, B. S., Heymann, C., Prousa, F., and Aigner, T., 2010. Multiple-scale facies and reservoir quality variations within a dolomite body–outcrop analog study from the Middle Triassic, SW German Basin. Marine and Petroleum Geology, 27(2), 386–411.
Koehrer, B., Aigner, T., Forke, H., and Pöppelreiter, M., 2012. Middle to Upper Khuff (Sequences KS1 to KS4) outcrop-equivalents in the Oman Mountains: Grainstone architecture on a subregional scale. GeoArabia, 17(4), 59–104.
Lucia, F. J., and Major, R. P., 1994. Porosity evolution through hypersaline reflux dolomitization. Dolomites: A Volume in Honour of Dolomieu, 325–341.
Makhloufi, Y., Collin, P.-Y., Bergerat, F., Casteleyn, L., Claes, S., David, C., Menendez, B., Monna, F., Robion, P., and Sizun, J.-P., 2013. Impact of sedimentology and diagenesis on the petrophysical properties of a tight oolitic carbonate reservoir. The case of the Oolithe Blanche Formation (Bathonian, Paris Basin, France). Marine and Petroleum Geology, 48, 323–340.
Marenco, P. J., Corsetti, F. A., Kaufman, A. J., and Bottjer, D. J., 2008. Environmental and diagenetic variations in carbonate associated sulfate: an investigation of CAS in the Lower Triassic of the western USA. Geochimica et Cosmochimica Acta, 72(6), 1570–1582.
Mateus, J., Saavedra, N., Carrillo, Z. C., and Mateus, D., 2007. Correlation development between indentation parameters and unaxial compressive strength for Colombian sandstones. CT & F-Ciencia, Tecnología y Futuro, 3(3), 125–136.
Mehrabi, H., Mansouri, M., Rahimpour-Bonab, H., Tavakoli, V., and Hassanzadeh, M., 2016. Chemical compaction features as potential barriers in the Permian-Triassic reservoirs of Southern Iran. Journal of Petroleum Science and Engineering, 145, 95–113.
Mehrabi, H., Rahimpour-Bonab, H., Enayati-Bidgoli, A. H., and Esrafili-Dizaji, B., 2015. Impact of contrasting paleoclimate on carbonate reservoir architecture: cases from arid Permo-Triassic and humid Cretaceous platforms in the south and southwestern Iran. Journal of Petroleum Science and Engineering, 126, 262–283.
Melim, L. A., 1996. Limitations on lowstand meteoric diagenesis in the Pliocene-Pleistocene of Florida and Great Bahama Bank: Implications for eustatic sea-level models. Geology, 24(10), 893–896.
Melim, L. A., Swart, P. K., and Maliva, R. G., 2001. Meteoric and marine-burial diagenesis in the subsurface of Great Bahama Bank, subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas Drilling Project. Society for Sedimentary Geology,137-161. DOI:10.2110/pec.01.70.0137.
Peyravi, M., Kamali, M. R., and Kalani, M., 2010. Depositional environments and sequence stratigraphy of the Early Triassic Kangan Formation in the northern part of the Persian Gulf: implications for reservoir characteristics. Journal of Petroleum Geology, 33(4), 371–386.
Peyravi, M., Rahimpour-Bonab, H., Nader, F. H., and Kamali, M. R., 2015. Dolomitization and burial history of lower Triassic carbonate reservoir-rocks in the Persian Gulf (Salman offshore field). Carbonates and Evaporites, 30(1), 25–43.
Pöppelreiter, M. C., Schneider, C. J., Obermaier, M., Forke, H. C., Koehrer, B., and Aigner, T., 2011. Seal turns into reservoir: Sudair equivalents in outcrops, Al Jabal al-Akhdar, Sultanate of Oman. GeoArabia, 16(1), 69–108.
Rahimpour-Bonab, H., Asadi-Eskandar, A., and Sonei, R., 2009. Effects of the Permian–Triassic boundary on reservoir characteristics of the South Pars gas field, Persian Gulf. Geological Journal, 44(3), 341–364.
Rahimpour-Bonab, H., Esrafili-Dizaji, B., and Tavakoli, V., 2010. Dolomitization and Anhydrite Precipitation in Permo-Triassic Carbonates at the South Pars Gasfield, Offshore Iran: Controls on Reservoir Quality. Journal of Petroleum Geology, 33(1), 43–66.
Saneifar, M., Conte, R., Chen Valdes, C., Heidari, Z., and Pope, M. C., 2015. Integrated rock classification in carbonate formations based on elastic and petrophysical properties estimated from conventional well logs. AAPG Bulletin, 99(7), 1261–1280. https://doi.org/10.1306/02091514167.
Sharifi-Yazdi, M., Rahimpour-Bonab, H., Nazemi, M., Tavakoli, V., and Gharechelou, S., 2020. Diagenetic impacts on hydraulic flow unit properties: insight from the Jurassic carbonate Upper Arab Formation in the Persian Gulf. Journal of Petroleum Exploration and Production Technology, 1–20.
Sibley, D. F., and Gregg, J. M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Research, 57(6), 967–975.
Tavakoli, V., 2015. Chemostratigraphy of the Permian–Triassic strata of the offshore Persian Gulf, Iran. In Chemostratigraphy (pp. 373–393). Elsevier.
Tavakoli, V., and Jamalian, A., 2019. Porosity evolution in dolomitized Permian–Triassic strata of the Persian Gulf, insights into the porosity origin of dolomite reservoirs. Journal of Petroleum Science and Engineering, 181(February), 106191. https://doi.org/10.1016/j.petrol.2019.106191.
Tavakoli, V., Rahimpour-Bonab, H., and Esrafili-Dizaji, B., 2011. Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. Comptes Rendus Geoscience, 343(1), 55–71.
Wang, Z., Wang, R., Weger, R. J., Li, T., and Wang, F., 2015. Pore-scale modeling of elastic wave propagation in carbonate rocks. Geophysics, 80(1), D51–D63.
Warren, J. K., 2006. Evaporites: sediments, resources and hydrocarbons. Springer Science & Business Media.
Whitaker, F.F., Smart, P.L., Hague, H., Waltham, D., and Bosence, D., 1999. Structure and function of a coupled two-dimensional diagenetic and sedimentological model of carbonate platform evolution. In: Numerical Experiments in Stratigraphy (Eds. J.H., Harbaugh, W.L., Watney, E.C., Rankey, R., Slingerland, R.H., Goldstein and E.K., Franseen), SEPM: Spec. Publ. 62, 339–356.
Zhao, L., Nasser, M., and Han, D., 2013. Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophysical Prospecting, 61(4), 827–841.