Document Type : Original Research Paper

Authors

Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Iju porphyry deposit is associated with the emplacement of Miocene tonalite-granodiorite intrusions (zircon U/Pb dating; 9.27±0.50) within Eocene volcanic and pyroclastic sequences including andesite, basaltic andesite, trachyandesite, andesitic breccias, tuffaceous breccias, and agglomerate. In this study, occurrence and chemistry of magnetites in the potassic alteration of Iju deposit were assessed using EMPA analysis. The findings imply for a limited occurrence of magnetite as fine-grained disseminated and/or product of biotite chloritization. Magnetites associated with potassic alteration of Iju deposit don’t show hematite intergrowth (as martitizied margin) and anhydrite paragenesis, indicating the lack of high oxygen fugacity (near magnetite-hematite buffers; ~ΔFMQ+4) during the magnetite crystallization in the potassic alteration. Studied magnetites are high temperature (>500 °C) and according to the Mg + Al + Si contents crystallized under low rate of fluid rock interaction. These evidences accompanied with the absence of reequilibration processes could imply for the lack of repeated stages of hydrothermal fluid exsolving during the evolution of potassic alteration in the in the Iju deposit. Additionally, results represent that there are considerable values of Ga (average; 0.015 wt. %) in the studied magnetites providing insights into the presence of unseen exploration potentials associated with porphyry Cu deposits of UDMB.

Keywords

Main Subjects

Asadi, S., 2018. Triggers for the generation of post-collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: New constraints from elemental and isotopic (Sr–Nd–Hf–O) data, Gondwana Research, 64, 97-121. https://doi.org/10.1016/j.gr.2018.06.008.
Asadi, S., Moore, F., and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review, Earth-Science Reviews, 138, 25–46. https://doi.org/10.1016/j.earscirev.2014.08.001.
Canil, D., and Lacourse, T., 2020. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite, Chemical Geology, 541, 119576. https://doi.org/10.1016/j.chemgeo.2020.119576.
Cao, C., Shen, P., Pan, H., Zheng, L., Li, C., and Feng, H., 2020. The formation mechanism of reduced porphyry Mo deposits in the West Junggar region, Xinjiang: The Suyunhe example, Ore Geology Reviews, 117, 103286. https://doi.org/10.1016/j.oregeorev.2019.103286.
Deditius, A.P., Reich, M., Simon, A.C., Suvorova, A., Knipping, J., Roberts, M.P., Rubanov, S., Dodd, A., and Saunders, M., 2018. Nanogeochemistry of hydrothermal magnetite, Contributions to Mineralogy and Petrology, 173, 46. https://doi.org/10.1007/s00410-018-1474-1.
Dupuis, C., and Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types, Mineralium Deposita, 46, 319–335. https://doi.org/10.1007/s00126-011-0334-y.
Ghasemi, A., and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran), J. Asian Earth Sci. 26, 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003.
Golestani, M., Karimpour, M.H., Malekzadeh Shafaroudi, A., and Haidarian Shahri, M.R., 2018. Geochemistry, U-Pb geochronology and Sr-Nd isotopes of the Neogene igneous rocks, at the Iju porphyry copper deposit, NW Shahr-e-Babak, Iran, Ore Geology Reviews, 93, 290–307. https://doi.org/10.1016/j.oregeorev.2018.01.001.
Hu, H., Li, J.W., Lentz, D., Ren, Z., Zhao, X.F., Deng, X.D, and Hall, D., 2014. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite, Ore Geology Reviews, 57, 393–405. https://doi.org/10.1016/j.oregeorev.2013.07.008.
Karimpour, M.H., and Sadeghi, M., 2019. A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran. Ore Geology Reviews, 104, 522-539. https://doi.org/10.1016/j.oregeorev.2018.11.022.
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Wӓlle, M., Heinrich, C.A., Holtz, F., and Munizaga, R., 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes, Geochimica et Cosmochimica Acta, 171, 15–38. https://doi.org/10.1016/j.gca.2015.08.010.
Liang, H.Y., Sun, W., Su, W.C., and Zartman, R.E., 2009. Porphyry copper–gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration, Econ. Geol.,  104, 587–596. https://doi.org/10.2113/gsecongeo.104.4.587.
Mahmoudi, E., Asadi, S., and Sharifpour, S., 2023. Micrometallogeny and hydrothermal fluid evolution of the Iju porphyry Cu deposit, NW Kerman, Iran: Evidence from fluid inclusions, Laser Raman spectroscopy, and single bond isotope systematics, Geochemistry, 125956. https://doi.org/10.1016/j.chemer.2023.125956.
Mirnejad, H., Mathur, R., Hassanzadeh, J., Shafiei, B., and Nourali, S., 2013. Linking Cu mineralization to host porphyry emplacement: Re-Os ages of molybdenites versus U-Pb ages of zircons and sulfur isotope compositions of pyrite and chalcopyrite from the Iju and Sarkuh porphyry deposits in Southeast Iran, Economic Geology, 108, 861–870. https://doi.org/10.2113/econgeo.108.4.861.
Nadoll, P., Angerer, T., Mauk, J.L., French, D., and Walshe, J., 2014. The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013.
Nadoll, P., Mauk, J.L., Leveille, R.A., and Koenig, A.E., 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States, Mineralium Deposita, 50, 493–515. https://doi.org/10.1007/s00126-014-0539-y.
Pokrovski, G.S., 2014. Use and misuse of chemical reactions and aqueous species distribution diagrams for interpreting metal transport and deposition in porphyry copper systems: Comment on Sun et al. (2013) “The link between reduced porphyry copper deposits and oxidized magmas”, Geochimica et Cosmochimica Acta 126, 635–638. https://doi.org/10.1016/j.gca.2013.05.049 103.
Rezaei, M., 2017. Effective parameters in mineralization potential of economic and subeconomic porphyry copper deposits in Urumieh- Dokhtar magmatic zone: using geochemical and fluid inclusion studies, Ph.D. thesis, Shahid Chamran University of Ahvaz, 204 pp.
Rezaei, M., Zarasvandi, A., Basious, S., and Zamanian, H., 2023. Occurrence of the rare minerals in porphyry Cu deposits: Evidences from the potassic alteration of Sarkuh porphyry deposit, Advanced Applied Geology, Accepted Manuscript.
Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40, 1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006.
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70, 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009.
Shafiei, B., Haschke, M., and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, Southeastern Iran, Mineralium Deposita, 44, 265-283. https://doi.org/10.1007/s00126-008-0216-0.
Sillitoe, R.H., 2010. Porphyry copper systems. Econ. Geol., 105, 3–41. https://doi.org/10.2113/gsecongeo.105.1.3.
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E., and Ling, M., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65, 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004.
Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L., Ireland, T.R.,Wei, Q.R., and Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas, Geochimica et Cosmochimica Acta, 103, 263–275. https://doi.org/10.1016/j.gca.2012.10.054.
Sun, W.D., Zhang, C.C., Liang, H.Y., Ling, M.X., Li, C.Y., Ding, X., Zhang, H., Yang, X.Y., Ireland, T., and Fan, W.M., 2014. The genetic association between magnetite–hematite and porphyry copper deposits: Reply to Pokrovski, Geochimica et Cosmochimica Acta, 126, 639-642. https://doi.org/642. 10.1016/j.gca.2013.07.038.
Tian, J., Zhang, Y., Gong, L., Francisco, D.G., and Berador, A.E., 2021. Genesis, geochemical evolution and metallogenic implications of magnetite: Perspective from the giant Cretaceous Atlas porphyry Cu–Au deposit (Cebu, Philippines), Ore Geology Reviews, 133, 104084. https://doi.org/10.1016/j.oregeorev.2021.104084.
Wang, R., Richards, J.P., Hou, Z., Yang, Z., and Du Frane, S.A., 2014. Increased magmatic water content - the key to Oligo-Miocene porphyry Cu-Mo ± Au formation in the Eastern Gangdese Belt, Tibet, Economic Geology, 109, 1315–1339. https://doi.org/10.2113/econgeo.109.5.1315.
Wen, G., Li, J.W., Hofstra, A.H., Koenig, A.E., Lowers, H.A., and Adams, D., 2017. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton, Geochimica et Cosmochimica Acta, 213, 255-270. https://doi.org/10.1016/j.gca.2017.06.043.
Wen, J., Zhang, J., Wen, H., Ling. K., Zhu, C., Fan, H., and Shen, N., 2021. Gallium isotope fractionation in the Xiaoshanba bauxite deposit, central Guizhou Province, southwestern China. Ore Geology Reviews, 137, 104299. https://doi.org/10.1016/j.oregeorev.2021.104299.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist 95, 185–187. https://doi.org/10.2138/am.2010.3371.
Yin, S., Wirth, R., He, H., Ma, C., Pan, J., Xing, J., Xu, J., Fu, J., and Zhang, X.-N., 2022. Replacement of magnetite by hematite in hydrothermal systems: a refined redox independent model, Earth and Planetary Science Letters, 577, 117282. https://doi.org/10.1016/j.epsl.2021.117282.
Zarasvandi, A., Heidari, M., Rezaei, M., Raith, J., Asadi, S., Saki, A., and Azimzadeh, A., 2019a. Magnetite chemistry in the porphyry copper systems of Kerman Cenozoic magmatic arc, Kerman, Iran, Iranian Journal of Science and Technology, Transactions A: Science, 43, 839–862. https://doi.org/10.1007/s40995-019-00677-6.
Zarasvandi, A., Rezaei, M., Azizi, S., Adelpour, M., and Saki, A., 2023b. Magnetite chemistry in the Dalli porphyry Cu-Au deposit, central Urumieh-Dokhtar Magmatic Arc (UDMA), Journal of Economic Geology, 15(1), 1–25. https://doi.org/10.22067/econg.2023.77655.1049.
Zarasvandi, A., Rezaei, M., Raith, J., Taheri, M., Asadi, S., and Heidari, M., 2023a. Magnetite chemistry of the Sarkuh Porphyry Cu deposit, Urumieh–Dokhtar Magmatic Arc (UDMA), Iran: A record of deviation from the path sulfide mineralization in the porphyry copper systems, Journal of Geochemical Exploration, 249, 107213. https://doi.org/10.1016/j.gexplo.2023.107213.
Zarasvandi, A., Rezaei, M., Raith, J.G., Asadi, S., and Lentz, D., 2019b. Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility, Ore Geology Reviews, 105, 183–200. https://doi.org/10.1016/j.oregeorev.2018.12.027.
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M., and Lentz, D.R., 2018. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran, Geochimica et Cosmochimica Acta, 223, 36–59. https://doi.org/10.1016/j.gca.2017.11.012.
Zhang, Y., Hollings, P., Shao, Y., Li, D., Chen, H., and Li, H., 2020. Magnetite texture and trace-element geochemistry fingerprint of pulsed mineralization in the Xinqiao Cu–Fe–Au deposit, Eastern China, American Mineralogist 105, 1712–1723. https://doi.org/10.2138/am-2020-7414.