Document Type : Original Research Paper

Authors

Department of Petroleum and Mining, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

In this research, the leaching of REEs from the tailing of the apatite-iron ore processing unit of Morvarid mine (NW Iran), has been investigated using nitric, hydrochloric and sulfuric acids. This tailing contains rare earth elements (REEs) specifically Ce, La, Nd, Y and its accompanying minerals are magnetite, apatite, monazite, hematite, quartz. The appropriate dimensions for apatite release are 80-75μm. Leaching tests were performed for all three acids, and digestion process was also used for sulfuric acid. The leaching in the presence of sulfuric acid, under a temperature of 90°C, an acid concentration of 40% and a time of 60 minutes, leads to the total recovery of REE equal to 40.23%, and in acid sulfuric acid digestion at 200°C, equal to 61.21%. became. The recovery of REE when using hydrochloric acid at 72.64°C, concentration of hydrochloric acid 36.21% and time 56.28 minutes, was equal to 60.57%. In the presence of nitric acid, under the optimal conditions of temperature 61.51°C, acid concentration 40% and time 72.92 minutes. Furthermore, the maximum recovery of total REE equal to 51.9% was obtained. Due to the higher recovery and the lower price of sulfuric acid, this method is suggested for extracting for the extraction of REEs from the tailings.

Keywords

Main Subjects

Abedini, M., 1984. Basics of Mineral Chemistry, Academic Publishing Center-Tehran, first edition, Iran (In Persian).
Adib, A., Nabilou, M., and Afzal, P., 2021. Relationship between Fe-Cu-REEs mineralization and magnetic basement faults using multifractal modeling in Tarom region, NW Iran, Episodes, doi.org/10.18814/epiiugs / 2021/021017.
Allen, M. B., Ghassemi, M. R., Shahrabi, M., Qorashi, M., 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25, 659- 672.
Aly, H.F., Ali, M.M., Taha, M.H., Authorityi, A.E., and Maddi, E., 2013. Dissolution Kinetics of Western Deseret Phosphate Rocks, Abu Tartur with Hydrochloric Acid, Arab J. Nucl. Sci. Appl., vol. 46, no. 5, pp. 1–16.
Amini, B., Amini-Chehragh, M., Hirayama, K., and Stocklin, J., 1969. Geological map of Tarom, Geological Survey of Iran, Tehran.
Berberian, F., Muir, I.D., Pankhurst, R.J., and Berberian. M., 1982. Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and Central Iran. – Journal of Geological Society, 139, pp. 605–614.
Berberian, M., and King, G. C. P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–265.
Daliran, F., 2002. Kiruna-Type Iron Oxide-Apatite Ores and Apatites of the Bafq District, Iran, with an Emphasis on the REE Geochemistry of Their Apatites. Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, 2, 303-320.
Dutrizac, J.E., 2017. The behavior of the rare earth elements during gypsum (CaSO4·2H2O) precipitation, Hydrometallurgy, 174, pp. 38-46. doi.org/10.1016/j.hydromet.2017.09.013
Gumgum, B.,1985. The Leaching of F Yttrium from Avnik (Bingol- Turkey) Apatite by Dilute sulfuric acid, Commune. Fac. Sci. Univ. Ankara Ser. B Chem. Chem. Eng., vol. 32, pp. doi.org/10.1501/Commub_0000000288
Gupta, C.k., and Krishnamurthy, N., 2005. Extractive Metallurgy of Rare Earth, CRC, Press, Florida,  http://dx.doi.org/10.1201/9780203413029.fmatt print ISBN: 9780-415-33340-5, eBook ISBN: 978-0-203-41302-9.
Hassanzadeh, J., Ghazi, A.M., Axen, G., Guest, B., 2002. Oligo–Miocene mafic alkaline magmatism north and northwest of Iran: evidence for the separation of the Alborz from the Urumieh–Dokhtar magmatic arc. Geological Society of America Abstracts with Programs 34, 331.
Haxel G., Hedrick J., and Orris. J., 2006. Rare earth elements critical resources for high technology. Reston (VA): United States Geological Survey. USGS Fact Sheet: 087‐ 02.". Retrieved 2012-03-13. doi.org/10.3133/fs08702.
Henderson, P., 1984. Rare earth elements geochemistry. Development in geochemistry, 2. Elsevier, Amsterdom.
Jorjani, E., Bagherieh, A.H., and Chelgani, SC., 2011. Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions, vol. 28, no. 2, pp. 557–562. doi: 10.1007/s11814-010-0383-4.
Jorjani, E., Bagherieh, A.H., Mesroghli, S., and Chelgani, SC., 2008. Prediction of yttrium, lanthanum, cerium, and neodymium leaching recovery from apatite concentrate using artificial neural networks, J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., vol. 15, no. 4, pp. 367–374. doi.org/10.1016/S1005-8850(08)60070-5.
Kanazawa, Y., and Kamitani, M , 2006. Rare earth minerals and resources in the world J. Alloy. Compd., 408, p. 1339. doi.org/10.1016/j.jallcom.2005.04.033.
Kilburn, T., Barry, T.K., 2010. The asteriske elemnt.a.k.a.the lantanides and yettrium, unlokal molycrop. Inc, withplaint. New York 10604 U.S.A.
Kim, E., Bae, I., Chae, S., and Shin, H.,2013. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements Journal of Alloys and compounds Vol. 486, Issues 1–2, , Pages 610-614. doi: 10.1016/j.jallcom.2009.07.015.
Kolyasnikov, S.V., Borisov, M.M., Kirillov, E.V., and Rybina, M.L., 2012. Extraction Method of Rare-earth Metals from Phosphogypsum, Patent No. RU 2471011 (C1).
Kuzmin, V.I., Pashkov, V., Lomaev, G.l., and Voskresenskaya, EN., 2015. Combined approaches for comprehensive processing of rare earth metal ores, Hydrometallurgy 129-130, 1-6. doi: 10.1016/j.hydromet.2012.06.011
Lokshin, E.P., and Tareeva, O.A., 2015. Production of high-quality gypsum raw materials from phosphor gypsum, Russ. J. Appl. Chem., 88, pp. 567-573. doi.org/10.1134/S1070427215040023.
Lukina, L., 2016. Rare-earth metals adsorption on a novel bisphosphonate separation material, Lut university.
Manis Kumar, J.H., Kumari, A., Panda, R., Rajesh Kumar, J., Yoo, K., Lee, J. Y., 2016. Review on hydrometallurgical recovery of rare earth metals, Elsevier, Volume 165, Part 1, October 2016, Pages 2-26. http://dx.doi.org/10.1016/j.hydromet.2016.01.003.
Mikaeili, K., Hosseinzadeh, M.R., Moayyed, M., and Maghfouri, S., 2018. The Shah-Ali-Beiglou Zn-Pb-Cu(-Ag) Deposit, Iran: An Example of Intermediate Sulfidation Epithermal Type Mineralization, Minerals, 8, 148; doi:10.3390/min8040148.
Mohammadizadeh, M., and Kohsari, A.H., 2015. Studying the resources of rare earth elements with the aim of feasibility of extracting these elements in Iran, the second national conference on geology and resource exploration (In Persian).
Moinvaziri, H., 1985. Volcanisme tertiaire et quaternaire en Iran, These d’Etat, Université Paris-Sud, Orsay.
Nabatian, G.H., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M., 2015. Iron and Fe-Mn Mineralization in Iran: Implications for Tethyan Metallogeny. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 62, 211-241. https://doi.org/10.1080/08120099.2015.1002001.
Ogata,T., Narita, H.,  Tanaka, M., Hoshino, M., Kon, Y., and Watanabe, Y ., 2016. Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands, Separation and Purification Technology. Volume 159, Pages 157-160. doi: 10.1016/j.seppur.2016.01.008.
Peelman, S., SUN, Z.H.I., Sietsma, J., and Yang, Y., 2014. Leaching of rare earth elements: Past and Presents, Eres 1st European Rare Earth Resources Conference.
Pereira, F., and Bilal, E., 2012. Phosphoric Acid Extraction and Rare Earth Recovery from Apatites of the Brazilian Phosphatic Ores, Rom. J. Miner. Depos., vol. 2, no. 85, pp. 49–52. hal-00788958.
Rahmani, S, H., and Mokhtari, A., 2003. Report of the project of exploration of rare earth elements, Geological and Mineral Exploration Organization of Iran (In Persian).
Rychkov, V.N., Kirillov, E.V., Kirillov, S.V., Semenishchev, V.S., Bunkov, G.M., Botalov, M.S., Smyshlyaev, D.V., and Malyshev, AS., 2018. Recovery of rare earth elements from phosphogypsum, Journal of Cleaner Production, Volume 196, Pages 674-681. doi.org/10.1016/j.jclepro.2018.06.114.
Samii-Biraq, A., Meshkeni, M., and Barzin, A., 2015. Rare earth elements (general, exploitation and market), Amirkabir Academic and Industrial Jihad Publications, Tehran, pp. 1-168(In Persian).
Shafai, S. Z., 1998. Processing methods of deposits containing rare earth elements, Faculty of Mining Engineering, University of Tehran (In Persian).
Siani, M., Mehrabi, B., Azizi, H., Wilkinson, C.M., and Ganerod, M., 2015. Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran. Open Geoscience, 7, 207–222. doi: 10.1515/geo-2015-0024
Soltani, F., Abdollahy, M., RahulRam, J.,  Koleini, SM., and Moradkhani, D., 2019. Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate: Part II: Selective leaching of calcium and phosphate and acid baking of the residue, Hydrometallurgy, Volume 184, March 2019, Pages 29-38.  Doi.org/10.1016/hydromet.2018. 024
Stockli, D.F., Hassanzadeh, J., Stockli, L.D., Axen, G., Walker, J.D., and Dewane, T.J., 2004. Structural and geochronological evidence for Oligo-Miocene intra-arc lowangle detachment faulting in the Takab-Zanjan area, NW Iran. Abstract, Programs Geological Society of America,36, 319.
Xu, Lu., Xiao, Y., and Li, D.,1992. An expert system for solvent extraction of rare earths J. Chem. Inf. Comput.
Zepf, V., 2013. Rare Earth Elements: A New Approach to the Nexus of Supply, Demand and Use Exemplified Along the Use of Neodymium in Permanent Magnets: Springer. doi:10.1007/978-3-642-35458-8.
Zhang, J., Zhao, B., and Schreiner, B., 2016. Separation Hydrometallurgy of Rare Earth Elements, Springer, pages 19-78.