Document Type : Original Research Paper

Authors

1 M.Sc. Student, Department of Geology, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Department of Geology, University of Zanjan, Zanjan, Iran

Abstract

The study area which is introduced as Homeijan magnetite- apatite mineralization in this paper, is a part of the Posht-e-Badam block in the Central Iranian Zone and is located at ~12Km southwest of Behabad. This area is composed of volcano-sedimentary rocks and acidic- basic intrusions of Precambrian and Cambrian age. Magnetite- apatite mineralizations are present as lenses near the southwestern part of the Homeijan village, which are hosted by acidic- intermediate tuffaceous rocks and dolomites. Magnetite, oligist (hematite), pyrite and chalcopyrite are the main ore minerals and apatite, pyroxene, tremolite- actinolite, calcite and quartz are as gangue minerals in the Homeijan Fe mineralization. Based on field and mineralogical studies, this mineralization texturally includes massive, brecciated, vein- veinlets and replacement textures. Chemical analyses of samples indicate that the mineralization has high concentrations of REEs up to 2.5 % in the apatite crystals. Geochemical studies demonstrate that Fet have high negative correlation with P2O5, SiO2 and ∑REE while there is a high positive correlation between ∑REE and P2O5. SEM-EDS qualitative analyses of apatite crystals indicate two REE bearing minerals including monazite and allanite as inclusions within the apatites. Furthermore, this study demonstrates that the apatite crystals are flour- apatite. Fluid inclusion studies within the apatite crystals indicate that main salinity varies between 7.86-13.9 wt.% NaCl and homogenization temperature is between 240-370°C. Comparing of REE patterns of Homeijan magnetite- apatite mineralization with other iron oxide- apatite mineralizations of Posht-e-Badam Block and Kiruna- type iron ores indicate similarities between these patterns. Generally, based on field and geochemical studies, the Homeijan magnetite- apatite mineralization classified as Kiruna- type Fe deposit.
 

Keywords

Main Subjects

Ahmad, S. N. and Rose, A. W., 1980- Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Economic Geology 75: 229-250.
Barton, M. D. and Johnson, D. A., 1996- An evaporitic-source model for igneous related Fe oxide–(REE–Cu–Au–U) mineralization. Geology 24: 259–262.
Bonyadi, Z., Davidson, G. J., Mehrabi, B., Meffre, S. and Ghazban., F., 2011- Significance of apatite REE depletion and monazite inclusions in the brecciated Se Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical Geology 281: 253-269.
Bookstrom, A. A., 1977- The magnetite deposits of El Romeral, Chile. Economic Geology 72: 1101–1130.
Daliran, F. and Stosch, H. G., 2005- Geology and metallogenesis of the phosphate and rare earth element resources of the Bafq iron ore district, Central Iran. 20th World Mining Congress, 7- 11 November Tehran, Iran.
Daliran, F., 1990- The magnetite- apatite deposit of Mishdovan, east central Iran. An alkali rhyolite hosted 'Kiruna- type' occurrence in the infra-Cambrian Bafq metallotect; Ph.D. thesis, Univ. of Heidelderg, Geowiss. Abhandl. 37, 248 pp.
Daliran, F., 2002- Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In Porter, T.M., (eds.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective. Volume 2: Adelaide, PGC Publishing, 303–320.
Dill, H. G., 2010- The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Science Reviews 100: 1-420.
Förster, H. J. and Jafarzadeh, A., 1994- The chador Malu iron ore deposit, Bafq district, central Iran, magnetite filled pipes; Neues. Jahb. Palaont. Abh. 168: 524-534.
Frietsch, R, 1978- On the magmatic origin of iron ores of the Kiruna type. Economic Geology 73: 478–485
Frietsch, R. and Perdahl, J. A., 1995- Rare earth elements in apatite and magnetite in Kiruna- type iron ores and some other iron ore type. Ore Geology Review 9: 489-510
Gleason, J. D., Marikos, M. A., Barton, M. D. and Johnson, D. A., 2000- Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe–P–REE) systems. Geochimica et Cosmochimica Acta 64: 1059–1068.
Haghipour, A., 1974- Etude geologique de la region de Biabanak- Bafq (Iran Central). Pour obtenir le grade de Docteur es sciences natureles.
Harlov, D. E., Andersson, U. B., Förster, H. J., Nyström, J. O., Dulski, P. and Broman, C., 2002- Apatite monazite relations in the Kirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology 191: 47–72.
Henríquez, F. and Nyström, J. O., 1998- Magnetite bombs at El Laco volcano, Chile. Garuda Frequent Flyer 120: 269–271.
Henriquez, F., Naslund, H. R., Nyström, J. O., Vivallo, W., Aguirre, R., Dobbs, F. M. and Lledó, H., 2003- New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile: A discussion. Economic Geology 98: 1497–1502.
Hildebrand, R. S., 1986- Kiruna-type deposits: their origin and relationship to inter mediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology 81: 640–659.
Hitzman, M. W., 2000- Iron oxide-Cu-Au deposits: What, where, when and why. In: Porter, T.M., (eds.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective. Adelaide, Australian Mineral Foundation 9–25.
Hitzman, M. W., Oreskes, N. and Einaudi, M. T., 1992- Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits. Precambrian Research 58: 241–287.
Jami, M., 2005- Geology, geochemistry and evolution of the Esfordi phosphate- iron deposit, Bafq area, central Iran; Unpublished Ph.D. thesis, University of South Wales, 403 pp.
Jami, M., Dunlop, A. C. and Cohen, D. R., 2007- Fluid inclusion and stable isotope study of the Esfordi apatite- magnetite deposit, Central Iran. Economic Geology 102: 1111–1128.
Kolker, A., 1982- Mineralogy and geochemistry of Fe–Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Economic Geology 77: 1146–1158.
Kryvdik, S. and Mykhaylov, V., 2001- The potential of the rare earth mineralization of Islamic republic Iran; National academy of science of Ukraine, 48 pp.
Loberg, B. E. H. and Horndahl. A. K., 1983- Ferride geochemistry of Swedish Precambrian iron ores, Mineralium deposita 18: 487-504.
McDonough, W. F. and Sun, S. S., 1995- Composition of the Earth. Chemical Geology 120: 223-253.
Mohamad Torab F. and Lehmann B., 2008- Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine 71: 347-363.
Mokhtari, M. A. A. and Ebrahimi, M., 2015- Geology and Geochemistry of Homeijan Magnetite- Apatite Deposit (SW Behabad, Yazd province). Geochemistry Journal 2 (2): 20-27.
Mokhtari, M. A. A. and Emami, M. H., 2008- REE pattern and REE mineralization in apatite-magnetite deposits of Bafq-Saghand district (Central Iran). Geosciences, Scientific Quarterly Journal, Special Issue 17: 162-169.
Mokhtari, M. A. A., 2016- Posht-e-Badam Metalogenic Block (Central Iran): A suitable zone for REE mineralization. Central European Geology 58(3): 199-216.
Mokhtari, M. A. A., Emami, M. H. and Hosseinzadeh, Gh., 2013- Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of Earth System Sciences 122: 795- 803.
Moore, F. and Modaberi, S., 2003- Origin of the Choghart iron oxide deposit, Bafq mining district, Central Iran: New isotopic and geochemical evidences. Journal of Sciences, University of Tehran 14(3): 259- 268.
Nabatian, Gh. and Ghaderi, M., 2013- Oxygen isotope and fluid inclusion study of the Sorkhe- Dizaj iron oxide-apatite deposit, NW Iran. International Geology Review 55(4): 397-410.
Naslund, H. R., Henriquez, F., Nyström, J. O., Vivallo, W. and Dobbs, F. M., 2002- Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal cordillera. In: Porter, T.M., (eds.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective, V. 2, Adelaide, PGC Publishing 207–226.
Nyström, J. O. and Henriquez, F., 1994- Magmatic features of iron ores of the Kiruna-type in Chile and Sweden: ore textures and magnetite geochemistry, Economic Geology 89: 820-839.
Nyström, J. O., Billstrom, K., Henriquez, F., Fallick, A. E. and Naslund, H. R., 2008- Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. Garuda Frequent Flyer 130: 177–188.
Parak, T., 1991- Volcanic sedimentary rock-related metallogenesis in the Kiruna-Skellefte belt of northern Sweden. Economic Geology 8: 20–50.
Phillpotts, A. R., 1976- Silicate liquid immiscibility: Its probable extent and petrogenetic significance. Am. J. Sci., 276: 1147-1177.
Ramazani J. and Tucker R. D., 2003- The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics; American J. Sci. 303: 622-665.
Roedder, E., 1984- Fluid inclusions, Mineralogical Society of America. Reviews in Mineralogy, 12: 644 pp.
Sillitoe, R. H. and Burrows, D. R., 2002- New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Economic Geology 97: 1101–1109.
Weidner, R. J., 1982- Iron oxide magmas in the system F-C-O. Canadian Mineralogist 20: 555-666.
Wilkinson, J. J., 2001- Fluid inclusion in hydrothermal ore deposits. Lithos 55: 229- 272.
Williams, G. J. and Houshmand Zadeh, A., 1966- A petrological and genetic study of the Choghart iron ore body and the surrounding rocks. Geological Survey of Iran, 18p.