Document Type : Original Research Paper

Authors

1 department of geology, fundamental sciences, Science and Research Branch, Azad university , tehran, Iran

2 3Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

3 Department of oil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

4 Assistant Professor, Fundamental science, Mahallat branch Islamic Azad University, Tehran, Iran

Abstract

The multifractal modelling is an effective approach for separation of geological
and mineralized zones from the background. Following cases are addressed
in this study; Concentration-Distance to Major Fault structures (C-DMF) fractal model
 and distribution of the known Fe indices/mines in the Bafgh area to distinguish the Fe
mineralization based on their distance to basement faults,  surface faults and master
 joints, using remote sensing information, airborne geophysics information and field
surveys. Application of the C-DMF model for the classification of Fe mineralization
 in the Esfordi and Behabad 1: 100,000 sheets reveals that the main Fe mineralizations
have a strong correlation with their distance to the major and basement faults.
Accordingly, the distances of Fe mineralization that has the grades upper than 55% in
 this area )43%≤S≤60%), are lower than 1 km related to basement faults, while such
distance for this threshold is 2344<DMJ≤1778 meter for the master joint and also for
the faults of 1:100,000 Behabad and Esfordi geology sheets in 43%S≤60% threshold
 (for the graides) the distances are 3162<DGF≤4365 meter to the faults. This indicates a
positive correlation between Fe mineralization and distance to the basement faults.
On the other words, the proximity evidence for the Precambrian high grades Fe
 deposits related to basement faults indicates syn-rifting tectonic events. This C-DMF
 fractal model can be used in exploration of the magmatic and hydrothermal ore
deposits.

Keywords

References
Adib, A., Mirzaei Ilani, Sh., Shoaei, Gh. and Afzal, P., 2017- Determination of a Conceptual Model for the Structural Features and Pb–Zn Mineralization in the North of Behabad Fault Zone, Central Iran,  Iranian Journal of Earth Sciences, Pages 168-183.
Afzal, P., Ahmadi, K. and Rahbar, K., 2017- Application of fractal-wavelet analysis for separation of geochemical anomalies. Journal of African Earth Sciences 128, 27-36.
Agterberg, F. P., Cheng, Q., Brown, A. and Good, D., 1996- Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Comput. Geosci. 22, 5, 497-507.
Bolviken, B., Stokke, P. R., Feder J. and Jossang, T., 1992- The Fractal Nature of Geochemical Landscapes, J. Geochem. Explor., Vol. 43, pp 91–109.
Boveiri Konari, M. Rastad, E. Mohajjel, M. Nakini, A. and Haghdoost, M., 2015- Texture, structure, mineralogy and genesis of sulphide ore facies at Tappehsorkh detrital – carbonate hosted Zn – Pb – (Ag) deposit, South of Esfahan. Iranian Scientific Quarterly Journal of Geoscience 25(97): 221-236 (in Persian).
Cheng, Q., Agterberg, F. P. and Ballantyne, S. B., 1994- The Separation of Geochemical Anomalies from Background by Fractal Method, J. Geochem. Explor., Vol. 51, pp 109–130.
Craw, D. and Campbell, J. R., 2004- Tectonic and Structural Setting for Active Mesothermal Gold Vein Systems, Sothern Alps, New Zealand, J. Struct. Geol., Vol. 26, pp 995-1005.
Daliran, F.,  2002- Kiruna type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites; in Porter, T.M., ed., Hydrothermal iron oxide copper gold and related deposits: A global perspective, v. 2 , PGC Publishing, Adelaide, p. 303-320
Daliran, F., Stosch, H. G. and Williams, P., 2007- Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and “apatitites” of the Bafq District, Central-East Iran, in: Andrew, C.J. et al., eds, Digging Deeper, Proceedings of the 9th Biennial SGA Meeting, Dublin, Irish Assoc. Econ. Geol., p. 1501.
Daliran, F., Stosch, H. G. and Williams, P., 2010- Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, east-central Iran, in: Corriveau, L., Mumin, H., eds., Exploring for iron oxide copper-gold deposits: Canada and global analogues: Geol. Assoc. Canada, Short Course Notes 20, p.143-155.
Drew, L. J., 2006- A Tectonic Model for the Spatial Occurrence of Porphyry Copper and Polymetallic Vein Deposits- Applications to Central Europe, Scientific Investigation Report, USGS, pp 1-36.
Forster, H. and Jafarzade, A., 1994- The Bafq mining district in Central Iran- a highly mineralized Infracambrian volcanic field, Economic Geology, v. 89, p. 1697-1721.
Ghavami-Riabi, R., 2007- Geochemical Exploration of Base Metal Massive Sulphide Deposits in the Eastern Part of Namaqua Province and Environmental South Africa; PhD Dissertation; Pretria university
Hassanpour, S. and Afzal, P., 2013- Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran, Arab. J. Geosci., Vol. 6, pp 957-970
Hassanzadeh, J., Stockli, D. F., Horton, B. K., Axen, G. J., Stockli, L. D., Grove, M., Schmitt, A. K. and Walker, J. D., 2008- U-Pb geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for Paleogeogrephy, magmatism, and exhumation history of Iranian basement, Tectonophysics, 451: 71-96.
Heidarian, H., Alirezaei, S. and Lentz, D. R., 2017- Chadormalou Kiruna-type magnetite-apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geology Reviews 83, 43-62.
Huckriede, R., Kursten, M. and Venzlaff, H., 1962- Zur geologie des gebiets zwischen Kerman und Saghand (Iran): Beihefte zum Geologischen Jahrbuch, 51: 197.
Jami, M., 2006- Geology, geochemistry and evolution of the Esfordi phosphate iron deposit, Bafq area, Central Iran, Unpublished PhD thesis, University of New South Wales, 355 p.
Jami, M., Dunlop, A. C. and Cohen D. R., 2007- Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran, Economic Geology, v.102 , p. 1111-1128.
Li, C., Ma, T. and Shi, J., 2003- Application of a Fractal Method Relating Concentrations and Distances for Separation of Geochemical Anomalies from Background. J. Geochem. Explor., Vol. 77, pp 167–175.
Mandelbrot, B. B., 1983- The Fractal Geometry of Nature (Updated and Augmented Edition). W.H. Freeman, San Francisco, CA.
Meng, X. and Zhao, P., 1991- Fractal Method for Statistical Analysis of Geological Data, Chinese J. Geosci., Vol. 2, pp 207-211.
Mokhtari, M. A. A. and Ebrahimi, M., 2015- Geology and Geochemistry of Homeijan Magnetite- Apatite Deposit (SW Behabad, Yazd province). Geochemistry journal. pp 20-27.
Nabatian, Gh., Rastad, E., Neubauer, F., Honarmand, M. and Ghaderi, M., 2015- Iron and Fe Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences. An International Geoscience Journal of the Geological Society of Australia. 62:2, 211-241, DOI: 10.1080/08120099.2015.1002001.
Nadimi, A., 2006- Evolution of the Central Iranian basement, Gondwana Research, 1-10 p.
Nouri, R., Jafari, M., Arain, M., Feizi, F. and Afzal, P., 2013- Correlation Between Cu Mineralization and Major Faults Using Multifractal Modeling in Tarom Area, NW Iran, Geol. Carpath.,  64, 5, 409 - 416
Rahimi, E., Maghsoudi, A. and Hezarkhani, A., 2016- Geochemical investigation and statistical analysison rare earth elements in Lakehsiyah deposit, Bafq district. Journal of African Earth Sciences 124, 139-150.
Rajabi, A., Rastad, E., Alfonso, P. and Canet, C., 2012- Geology, ore facies and sulfur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam block1504.
Ramezani, J. and Tucker, R., 2003- The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303: 622–665.
Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A. B. and Daneshvar Saein, L., 2012- Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration. v. 122, pp 9-19.
Samani, B. A., 1988- Metallogeny of the Precambrian in Iran. Precambrian Res.; 39, 85-106. Talbot, C. J. and Alavi, M., 1996- The past of a future syntaxis across the Zagros, in Alsop, G. I., Blundell, D. J., and Davison, I., editors, Salt Tectonics: Geological Society Special Publications, 100: 89–109.
Talbot, C. J. and Alavi, M., 1996- The past of a future syntaxis across the Zagros, in Alsop, G. I., Blundell, D. J., and Davison, I., editors, Salt Tectonics: Geological Society Special Publications, 100: 89–109.
Turcotte, D. L., 1986- A Fractal Approach to the Relationship between Ore Grade and Tonnage. Econ. Geol., Vol. 18, pp 1525-1532.
Wang, W., Zhao, J., Cheng, Q. and Liu, J., 2012- Tectonic-Geochemical Exploration Modeling for Characterizing Geo-Anomalies in Southeastern Yunnan District, China, J. Geochem. Explor., Vol. 122, pp 71–80.