Document Type : Original Research Paper

Authors

1 Department of Economic Geology, Tarbiat Modares University, Tehran

2 Assistant Professor, Department of Economic Geology, Tarbiat Modares University, Tehran, Iran

3 Department of Geology, Shahid Beheshti University, Tehran

Abstract

The Sebandoon gold deposit is located 40 km north of the Bardaskan in the northern part of the Central Iran. The rock units exposed in the area consist of upper Cretaceous volcano-sedimentary sequences of trachyte-trachyandesite, andesibasalt,tuff and carbonaceous shale which intruded by post Eocene syenite-quartz monzonite subvolcanic intrusions and diabasic dikes. The main gold reservoir in the Sebandoon deposit has occurred in cone-shaped and mostly in the trachyte-trachyandesite lava with dimensions of 90×150 m in the surface which continue up to the depth of 70 m. The hydrothermal alterations occurred in the deposit area include silicic, sulphidic, partly argillic (supergen) and propylitic which two former contains most of the high grade gold ores. The main ore structures and textures in the deposit are vein-veinlets (stockwork) and breccia which consists of quartz, sulphide minerals and rare adularia. Primary ore mineral assemblages of the deposit are simple and consist of pyrite, sphalerite, chalcopyrite, bornite, galena, arsenopyrite and gold. Covellite, chalcocite and iron hydroxides are secondary minerals in the deposit. Gold grains with less of than 60 microns in size has been found as inclusion in pyrite and chalcopyrite, in sulfides rims and intergrowth with quartz. Fluid inclusion studies on ore-bearing quartz reveal that majority of primary inclusions are liquid-rich two-phase (LV). The studies indicate homogenization temperatures between 165 and 254°C and salinity between 0.9 to 7.8 wt% NaCl eq. Comparison of the main characteristics of the Sebandoon deposit with epithermal gold deposits reveals that the geology, alteration, ore mineralogy, geochemical characteristics and fluid inclusions of the Sebandoon gold deposit is similar to low to intermediate-sulphidation type epithermal deposits.

Keywords

Main Subjects

References
Alavi, M., 1994- Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics, 229: 211-238.
Albinson, T., Norman, D. I., Cole, D. and Chomiak, B., 2001- Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data, Society of EconomicGeologists Special Publication, 8:1-32.
Ashley, R. P., 1979- Relation between volcamsm and ore deposition at Goldfield, Nevada, in International Association for the Genesis of Ore Deposits (IAGOD), 5th Quadrenmal Symposium Proceedmgs, Vol II Nevada Bureau of Mines and Geology Report 33: 77-86.
Baronz, F. and Macaudiere, J., 1984- La serie volcanosedimentaire du chainon ophiolitique de Sabzevar (Iran). Ofioliti, 9: 3–26.
Bente, K. and Doering, T., 1995- Experimental studies on the solid-state diffusion of Cu + In in ZnS and on “disease”, DIS (Diffusion Induced Segregations), in sphalerite and their geological applications. Mineralogy and Petrology, 53: 285-305.
Bortnikov, N. S., Genkin, A. D., Dobrovolskaya, M. G., Muravitskaya, G. N. and Filiminova, A. A., 1991- The nature of chalcopyrite inclusions in sphalerite: exolution, coprecipitation, or disease. Economic Geology, 86: 1070-1082.
Fard, M., Rastad, E. and Ghaderi, M., 2006- Epithermal gold and base metal mineralization at Gandy, north of Central Iran and the role of rhyolitic intrusions. Journal of Sciences, Islamic Republic of Iran, University of Tehran, v. 17, p. 327-335.
Haas, J. L., 1971- The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Economic Geology, 66: 940–946.
Hall, D. L., Sterner, S. M. and Bodnar, R. J., 1988- Freezing point depression of NaCI-KCI-H20 solutions. Econ. Geol. V. 83, 197-202.
Hedenquist, J. W., Arribas, J. A. and Gonzalez-Urein, E., 2000- Exploration for epithermal gold deposits. Society of Economic Geology Review, 13: 254-277.
Hedenquist, J. W., Izawa, E., Arribas, A. and White, N. C., 1996- Hydrothermal system in volcanic arcs, origin of the exploration for epithermal gold deposits: a short course at Mineral Resource Department. Geological Survey of Japan, Higashi 1-1-3, Tsukuba 305, Japan, 139 p.
Jébrak, M., 1997- Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution, Ore Geology Reviews, 12: 111–134.
Jiangxi Exploration Co., 1994- Explanatory text of geochemical map of Shamkan (7760), Stream sediment survey 1:100000. Report No 22, China.
Kouhestani, H., Ghaderi, M., Chang, Z. and Zaw, K., 2015- Constraints on the ore fluids in the Chah Zard breccia-hosted epithermal Au–Ag deposit, Iran. Fluid inclusions and stable isotope studies. Ore Geol. Rev. 65, 512–521.
Kouhestani, H., Ghaderi, M., Zaw, K., Meffre, S. and Emami, M. H., 2012- Geological setting and timing of the Chah Zard breccia-hosted epithermal gold-silver deposit in the Tethyan belt of Iran. Mineralium Deposita, 47:425-440.
Lepetit, P., Bente, K., Doering, T. and Luckhaus, S., 2003- Crystal chemistry of Fe-containing sphalerites. Physics and Chemistry of Minerals, 30: 185-191.
Lexa, J., 1999- Outline of the Alpine geology and metallogeny of the Carpatho-Pannonian region: Society of Economic Geologists Guidebook Series, v. 31, p. 65–108.
Richards, J. P and Sholeh, A., 2016- The Tethyan tectonic history and Cu-Au metallogeny of Iran. Economic Geology, Special Publication 19: 193–212.
Richards, J. P., 2015- Tectonic, magmatic and metallogenic evolution of the Tethyan orogen: From subduction to collision, Ore Geology Reviews, 70: 323–345.
Richards, J. P., Wilkinson, D. and Ullrich, T., 2006- Geology of the Sary Gunay epithermal gold deposit, northwest Iran. Economic geology, 101: 1455-1496.
Roedder, E., 1984- Fluid inclusions. Reviews in Mineralogy, 12, 664 p.
Shafaii Moghadam, H. and Stern, R. J., 2014- Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (I) Paleozoic ophiolites. Journal of Asian Earth Science. 91: 19–38.
Shafaii Moghadam, H. and Stern, R. J., 2015- Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites. Journal of Asian Earth Science. 100: 31–59.
Shafaii Moghadam, H., Stern, R. J., Corfu, F., Chiaradia, M. and Ghorbani, G., 2014- Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos, 224–241.
Shamanian, G. H., Geffrey, W., Hedenquist, J. W., Hattori, K. H. and Ghaderi, M., 2003- The Gandy and Abolhassani epithermal prospects in the Alborz magmatic arc, Semnan province, Northern Iran. Econ. Geol., v.99, pp.691-712.
Shamanian, G. H., Hedenquist, J. W., Hattori, K. H. and Hassanzadeh., J., 2004- The Gandy and Abolhassani epithermal prospects in the Alborz magmatic arc, Semnan province, northern Iran. Economic Geology, 99: 691-712.
Shepherd, T. J., Rankin, A. H. and Alderton, D. H. M., 1985- A practical guide to fluid inclusion studies. Blackie,
Glasgow, 223 p.
Shojaat, B., Hassanipak, A. A., Mobasher, K. and Ghazi, A. M., 2003- Petrology, geochemistry and tectonics of the Sabzevar ophiolite, north central Iran. Journal of Asian Earth Sciences, 21: 1053–1067.
Sillitoe, R. H. and Hedenquist, J. W., 2003- Linkages between volcano-tectonic settings, ore-fluid compositions, and epithermal precious-metal deposits. In: Simmons, S.F., Graham, I. (eds.) Volcanic, geothermal, and ore forming fluids: rulers and witnesses of processes within the earth. Society of Economic Geologists, Special Publication, 10: 315-343.
Simmons, S. F., White, N. C. and John, D. A., 2005- Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th Anniversary Volume, pp: 485-522.
Sterner, S. M., Hall, D. L. and Bodnar, R. J., 1988- Synthetic fluid inclusions V: solubility relations in the system NaCl-KCl-H2O under vaporsaturated conditions. Geochemica et Cosmochemica Acta, Vol: 52(5), p: 989-1005.
Valenza, K., Moritz, R., Mouttaqi, A., Fontignie, D. and Sharp, Z., 2000- Vein and karst barite deposits in the western Jebilet of Morocco: fluid inclusion and isotope (S, O, Sr) evidence for regional fluid mixing related to central Atlantic Rifting. Economic Geology, 95 (3): 587-606.
Van Leeuwen, T. M., Leach, T. M., Hawke, A. A. and Hawke, M. M., 1990- The Kelian disseminated gold deposit, East Kalimantan, Indonesia: Journal of Geochemical Exploration, v. 35, pp. 1–61.
Vikre, P. G., 1989- Ledge Formation at the Sandstorm and Kendall Gold Mines, Goldfield, Nevada, Economic Geology Vol. 84, 1989, pp. 2115-2138.
Wallier, S., Rey, R., Kouzmanov, K., Pettke, T., Heinrich, C. A., Leary, S., O’Connor, G., Tamas, C. G., Vennemann, T. and Ullrich, T., 2006- Magmatic  fluids in the brecciahosted epithermal Au-Ag deposit of Ros¸ ia Montana, Romania. Economic  Geology 101, pp. 923-954.
Wilkinson, J. J., 2001- Fluid Inclusions in hydrothermal ore deposits. Lithos, 55: 229-279.
Zhang, Z., Mao, J., Wang, Y., Pirajno, F., Liu, J. and Zhao, Z., 2010- Geochemistry and geochronology of the volcanic rocks associated with the Dong'an adularia–sericite epithermal gold deposit, Lesser Hinggan Range, Heilongjiang province, NE China: Constraints on the metallogenesis, Ore Geology Reviews, 37: 158–174