Document Type : Original Research Paper


1 Ph.D. Student, Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran

2 Associate Professor, Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran

3 Assistant Professor, Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran


The Nodoushan intrusive complex is a part of Cenozoic plutonism, which located in the central part of the Urumieh–Dokhtar Magmatic Belt (UDMB). This complex consists of four main intrusives, including diorite, granite-granodiorite, diorite porphyry and granodiorite. Mafic microgranular enclaves (MMEs) are abundant in the diorite porphyry and granodioritic intrusives and also in some parts of Granitegranodiorite intrusives, which consist of diorite, monzodiorite and rarely gabbro -diorite. According to geochemical data, the Nodoushan intrusive complex is metalominous to moderately peraluminous, I-type and shows medium to high potassium calc-alkaline affinity. Geochemical investigations show that contamination and mafic-felsic magma mixing played significant role in the evolution and petrogenesis of the mentioned intrusions magmas and formation of MMEs. Using U-Pb zircon dating method, the obtained magma crystallization ages are about 30 Ma for the dioritic and granite-granodiorite intrusives, 24 Ma for the diorite porphyry and 25 Ma for the granodioritic intrusives. In addition, the age for part of the granite-granodiorite unit that is located in the northeast corner of the region, at the north of the Nain-Dehshir fault (NDF) and the western part of the Central Iranian Microcontinent (CIM), was determined 40 Ma. The geochemical evidences suggest that the studied intrusions magmas were derived from partial melting of continental crust caused by the mantle melts in an active continental margin. It seems that the melting of rocks with combination of metabasalt and metagraywacke in the lower crust in balance with the residual consisting of clinopyroxene, amphibole and to a lesser extent plagioclase; have the greatest harmony with geochemical characteristics of the studied intrusions. 


Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005- Convergence history across Zagros (Iran): constraints from collisional and earlier deformation: International Journal of Earth Sciences, 94, 401–419.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, R., 2011- Zagros orogeny:
a subduction-dominated process. Geological Magazine, 148, 692–725.
Ajaji, T., Weis, D., Giret, A. and Bouabdellah, M., 1998- Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. Lithos, 45, 371–393.
Allen, M. B., 2009- Discussion on the Eocene bimodal Piranshahr massif of the Sanadaj-Sirjan Zone, West Iran: a marker of the end of collision in the Zagros orogen. Journal of the Geological Society of London, 166, 981–982.
Arslan, M. and Aslan, Z., 2006- Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey: Journal of Asian Earth Sciences, 27, 177–193.
Bacon, C. R. and Druitt, T. H., 1988- Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98, 224–256.
Ballato, P., Mulch, A., Landgraf, A., Strecker, M. R., Dalconi, M. C., Friedrich, A. and Tabatabaei, S. H., 2010- Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth and Planetary Science Letters, 300, 125–38.
Barbarin, B. and Didier, J., 1991- Conclusions: Enclaves and Granite Petrology. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology. Elsevier, Amsterdam, 545–549.
Barbarin, B. and Didier, J., 1992- Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh. Earth Sciences 83, 145–153.
Batchelor, R. A. and Bowden, P., 1985- Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48, 43–55.
Bateman, R., 1995- The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth-Science Reviews, 39, 91–106.
Berberian, F. and Berberian, M., 1981- Tectono-plutonic episodes in Iran, In Zagros-Hindu Kush-Himalaya Geodynamic Evolution. In: H. K. Gupta and F. M. Delany (Eds.), Washington, D.C.: American Geophysical Union, 3, 5–32.
Berberian, F., Muir, I. D., Pankhurst, R. J. and Berberian, M., 1982- Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran: Journal of the Geological Society of London, 139, 605–614.
Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.
Bussy, F. and Ayrton, S., 1990- Quartz textures in dioritic rocks of hybrid origin. Schweizerische Mineralogische und Petrographische Mitteilungen, 70, 223–235.
Chappell, B. W. and White, A. J. R., 1974- Two contrasting granite types: expanded abstract. Pacific Geology, 8, 173–174.
Chappell, B. W. and White, A. J. R., 1992- I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh. Earth Sciences, 83, 1–26.
Chappell, B. W., 1996- Magma mixing and the production of compositional variation within granite suites: Evidence from the granites of southeastern Australia. Journal of petrology, 37, 449–470.
Chappell, B. W., Bryant, C. J., Wyborn, D. and White, A. J. R., 1998- High- and Low-temperature I-type granites. Resource Geology, 48, 225–235.
Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M. and Iizuka, Y., 2013- Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163, 70–87.
Davidson, J., Turner, S., Handley, H., Macpherson, C. and Dosseto, A., 2007- Amphibole “sponge” in arc crust? Geology, 35, 787–790.
De la Roche, H., Leterrier, J., Grande Claude, P. and Marchal, M., 1980- A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses-Its relationships with current nomenclature. Chemical Geology 29, 183–210.
Defant, M. J. and Drummond, M. S., 1990- Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347, 662–665.
Dehghani, G. A. and Makris, J., 1984- The gravity field and crustal structure of Iran. Neues Jahrbuch der Geologischen und Palaeontologischen Abhandlungen, 168, 215–229.
Emami, M. H., 2000- Magmatism in Iran. Tehran: Geological Survey of Iran.
Gao,  Y.,  Hou,  Z.,  Kamber,  B.  S.,  Wei,  R.,  Meng,  X.  and  Zhao,  R.,  2007-  Adakite-like  porphyries  from  the  southern  Tibetan  continental  collision  zones: evidence for slab melt metasomatism. Contributions to Mineralogyand Petrology, 153, 105–120.
Ghorbani, M. R., Graham, I. T. and Ghaderi, M., 2014- Oligocene-Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran: International Geology Review, 56, 1039–1050.
Gorton, M. P. and Schandl, E. S., 2000- From continental to island arc: A geochemical index of tectonic setting for arc-related and with plate felsic to intermediate volcanic rocks. Canadian Mineralogist, 38, 1065–1073.
Grove, T. L. and Donnelly-Nolan, J. M., 1986- The evolution of young silicic lavas at Medicine Lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contribution to Mineralogy and Petrology, 92, 281–302.
Harker, A., 1909- The natural history of igneous rocks, Methuen, London, p. 304.
Haschke, M., Ahmadian, J., Murata, M. and McDonald, I., 2010- Copper mineralization prevented by arc-root delamination during alpine-Himalayan collision in central Iran. Economic Geology, v. 105, pp. 855–865.
Holten, T., Jamtveit, B. and Meakin, P., 2000- Noise and oscillatory zoning of minerals. Geochemica et Cosmochemica Acta, 64, 1893–1904.
Hongming, C., Hongfei, Z. and Wangchun, X., 2009- U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze fold belt: Petrogenesis and implication for tectonic evolution. Journal of Earth Science, 20, 681–698.
Irvine, T. N. and Baragar, W. R. A., 1971- A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548.
Karsli, O., Chen, B., Aydin, F. and Sen, C., 2007- Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98, 67–96.
Kay, S. M. and Mpodozis, C., 2001- Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust: GSA Today, 11, 4–9.
Klein, M., Stosch, H. G. and Seck, H. A., 1997- Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chemical Geology, 138, 257–271.
Kumar, S., Rino, V. and Pal, A. B., 2004- Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Research, 7, 539–548.
Kuster, D. and Harms, U., 1998- Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review. Lithos, 45, 177–195.
Martin, H., 1999- Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411–429.
McClay, K. R., Whitehouse, P. S., Dooley, T. and Richards, M., 2004- 3D evolution of fold and thrust belts formed by oblique convergence. Marine Geology, 21, 857–877.
Mohajjel, M., Fergusson, C. L. and Sahandi, M. R., 2003- Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21, 397–412.
Nakamura, N., 1974- Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757–775.
Nardi de, L. V. S. and Lima, E. F., 2000- Hybridisation of mafic microgranular enclaves in the Lavras Granite Complex, southern Brazil. Journal of South American Earth Sciences, 13, 67–78.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008- Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106, 380–398.
Patino-Douce, A. E., 1999- What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez, C., Vigneresse, J.L. (Eds.), Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168, 55–75.
Pearce, J. A. Harris, N. B. W. and Tindle, A. G., 1984- Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956–983.
Peccerillo, A. and Taylor, S. R., 1976- Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.
Richards, J. P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012- High Sr/Ymagmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology, 107, 295–332.
Ricou, L. E., 1994- Tethys reconstructed: plates continental fragments and their boundaries since 260 Ma from Central America to southeastern Asia. Geodinamica Acta, 7, 169–218.
Roberts, M. P. and Celemns, J. D., 1993- origin of high potassium, Calk-alkaline, I type Granitoids, Geology, 21, 825- 828.
Ryerson, F. J. and Hess, P. C., 1978- Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochimica et Cosmochimica Acta, 42, 921–932.
Sengor, A. M. C., Altiner, D., Cin, A., Ustaömer, T. and Hsü, K. J., 1988- Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana land. In Gondwana and Tethys (Eds M. G. Audley- Charles and A. Hallam), pp. 119–81. Geological Society of London, Special Publication no. 37.
Shafaii Moghadam, H., Li, X. H., Ling, X. X., Santos, J. F., Stern, R. J., Li, Q. L. and Ghorbani, G., 2015- Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos, 216, 118–135.
Shahabpour, J., 2005- Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24, 405–417.
Shand, S. J., 1969- Eruptive Rocks: Their Genesis, Composition, Classification and Their Relation to Ore Deposits, Hafner, New York, 488p.
Sparks, S. R. J., Sigurdsson, H. and Wilson, L., 1977- Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267, 315–318.
Srivastava, R. K. and Singh, R. K., 2004- Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton: evidence for mantle metasomatism. Journal of Asian Earth Sciences, 23, 373–389.
Stephens, W. E., Holden, P. and Henney, P. J., 1991- Microdioritic enclaves within the Scottish Caledonian granitoids and their significance for crustal magmatism. In: Didier, J., Barbarin. B. (Eds.), Enclaves and granite petrology. Elsevier, Amsterdam, 125–134.
Stocklin, J., 1968- Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin, 52, 1229–1258.
Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A. D. and Norry M. J. (Eds), magmatism in ocean basins. Geological Society, London, Special Publications, 42, 313–345.
Taylor, S. R. and McLennan, S. M., 1985- The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, 312 p.
Tepper, J. H., Nelson, B. K., Bergantz, G. W. and Irving, A. J., 1993- Petrology of the Chilliwack Batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology, 113, 333–351.
Thuy, N. T. B., Satir, M., Siebel, W., Vennemann, T. and Long, T. V, 2004- Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. Journal of Asian Earth Sciences, 23, 467–482.
Tindle, A. G., 1991- Trace element behaviour in microgranular enclaves from granitic rocks. In: Didier, J., Barbarin, B., (Eds) Enclaves and granite petrology. Elsevier, Amsterdam, 313–331.
Verdel, Ch., Wernicke, B. P., Hassanzadeh, J. and Guest, B., 2011- A Paleogene extensional arc flare - up in Iran, Tectonics 30.
Waight, T. E., Weaver, S. D., Muir, R. J., Maas, R. and Eby, N., 1998- The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition. Contribution to Mineralogy and Petrology, 130, 225–239.
Weaver, B. L. and Tarney, J., 1984- Empirical approach to estimating the composition of the continental crust, Nature, 310, 575–577.
Wilson, M., 1989- Igneous Petrogenesis. Unwin Hyman London, 466p.
Winter, J. D., 2001- An Introduction to Igneous and Metamorphic Petrology, Prentice Hall, 697p.
Zhang, Z. Y., Du, Y. S., Teng, C. Y., Zhang, J. and Pang, Z. S., 2014- Petrogenesis, geochronology, and tectonic significance of granitoids in the Tongshan intrusion, Anhui Province, Middle–Lower Yangtze River Valley, eastern China. Journal of Asian Earth Sciences, 79, 792–809.
Zhou, M. F., Yan, D. P., Wang, C. L., Qi, L. and Kennedy, A., 2006- Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China, Earth and Planetary Science Letters, 248, 286–300