Document Type : Original Research Paper

Authors

1 PhD. Student, Tarbiat Moddares University, Faculty of Basic Sciences, Department of Geology, Tehran, Iran

2 Associate Professor, Reserch Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran.

3 Professor, Kharazmi University, Faculty of Basic Sciences, Department of Geology, Tehran, Iran.

4 Assistant Professor, Tarbiat Moddares University, Faculty of Basic Sciences, Department of Geology, Tehran, Iran.

Abstract

Nepheline syenite intrusive of Kaleybar is located in South and West of the Kaleybar city in eastern Azarbayjan province. This zoned intrusive complex is formed by penetration of two separated silica undersaturated and saturatated magmatic phases with Oligocene-Miocene ages. Undersaturated rocks are composed of alkali pyroxenite, mela alkali-gabbro to nepheline gabbro-diorte, nepheline syenite and nepheline sodalite syenite dikes. Silica saturated rocks is consist of  a quartz monzonitic stock, which has penetrated in the center of nepheline syenite intrusive and related quartz syenite - micro syenite dikes. Undersaturated phase has potassic alkaline affinity and nepheline syenites are miaskitic Malignite. In contrast, silica saturated rocks belong to high-K calc-alkaline to shoshonitic magma. Field observation, petrographical and geochemical studies, indicates that undersaturated rocks are comagmatic and crystal fractionation, accumulation and low density minerals floatation processes play significant role in their magmatic evolution. High enrichment of rare elements especially LREE and LILE compare to variable depletion of HREE and HFSE are infer a basanitic parental magma generated from a previously subduction-metasomatised lithospheric mantle source. Silica saturated magma of Kaleybar was probably resulted form the lower crust Partial melting and geochemical similarities resulted from partial melting of lower crust and its geochemical similarities with undersaturated parts is due to magma mixing and contamination. Repeatedly injection of alkaline and calc-alkaline magmas could be occurred in a post collision setting after Eocene in Azerbaijan region.

Keywords

 
References
Alberti, A., Comin-Chiaramonti, P., Battistini, G. D. I. & Nicoletti, M., 1976-  Geochronolgy of the eastern Azerbaijan volcanic plateau (Norstwest Iran), Italiana dimieralogia e petrologia, 32, 579-589.
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F.&  Mitchell, J. G., 2000-  Petrogenetic evolution late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102, 67-95.
Aydin, F., Karsli, O. & Chen, B., 2008- Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey, Lithos 104 (2008) 249-266
Bailey, J. C., 2006- Geochemistry of boron in the Ilímaussaq alkaline complex, South Greenland. Lithos, 91, 319-330.
Baker, B. H. & McBirney, A. R., 1985- Liquid fractionation. Part III: Geochemistry of zoned magmas and the compositional effects of liquid fractionation, Journal of Volcanology and Geothermal Research, 24, 5-81.
Barbieri, M., Beccaluva, L., Brotzu, P., Conte, A., Garbarino, C., Gomes, C. B., Loss, E. L., Macciotta, G., Morbidelli, L., Scheibe, L. F., Tamura, R. M. & Traversa, G., 1987- Petrological and geochemical studies of alkaline rocks from continental Brazil. 1. The phonolite suite from Piratini, R.S. eochimica Brasiliensis 1, 109-138.
Barker, D. S., 1996- Carbonatite volcanism. In: Mitchell, R.H. Eds., Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis and Economic Potential. Mineral. Ass. Canada, Short Course, 24, 45-61.
Brotzu, P., Melluso, L., Bennio, L., Gomes, C. B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C. &  D’Antonio, M., 2007- Petrogenesis of the Early Cenozoic potassic alkaline complex of Morro de Sa ˜o Joa ˜o, southeastern Brazil , Journal of South American Earth Sciences 24 (2007) 93-115
Conceicao, R. V. & Green, D. H., 2004- Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite‏pargasite lherzolite. Lithos 72, 209-229.
Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelević, D. & Venturelli, G., 2009- Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting Lithos 107, 68-92.
Cox, K. G., Bell, J. D. & Pankhurst, R. J., 1979- The interpretation of igneuos rocks, Allen and unwin, London, 450P .
Deer, W. A., Howie, R. A. & Zussman, J., 1992- An Introduction to the rock forming minerals. 2nd edition, Longman Scientific and Technical, 696 p.
Dilek, Y., Imamverdiyev, N. & Altunkaynak, S., 2009- Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint: International Geology Review, p. 1-43.
Eby, G. N., Woolley, A. R., Din, V. &  Platt, G., 1998- Geochemistry and Petrogenesis of Nepheline Syenites: Kasungu-Chipala, Ilomba and Ulindi Nepheline Syenite Intrusions, North Nyasa Alkaline Province, Malawi, Journal of Petrology, 39, 1405-1424.
Eyal, M., Litvinovsky, B., Jahn, B. M., Zanvilevich, A. &  Katzir, Y., 2009- Origin and evolution of post-collisional magmatism: Coeval neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. chemical Geology 269 (2009) 153-179.
Fall, A., Bodnar, R. J., Szabó, Cs.  & Pál-Molnár, E., 2007- Fluid evolution in the nepheline syenites of the Ditrau Alkaline Massif, Transylvania, Romania: Lithos, v. 95, p. 331–345.
Fitton, J. G. &  Upton, B. G. J., 1987- (eds.), Alkaline Igneous Rocks.Geological Society Spec. Publ. No 3, Blackwell, 568 p.
Foland, K. A., Landoll, J. D., Henderson, C. M. B., Jiangfeng, C., 1993- Formation of cogenetic quartz and nepheline syenites.       Geochimica et Cosmochimica Acta 57, 697-704.
Foley, S. F., 1992b- Vein plus wall-rock melting mechanism in the lithosphere and the origin of potassic alkaline magmas. Lithos 28, 435-453.
Foley, S. F., Venturelli, G., Green, D. H. & Toscani, L., 1987- The ultrapotassic rocks: characteristics, classification and constrains for petrogenetic models. Earth Sci. Rev. 24, 81-134.
Frost, B. R. &  Frost, C. D., 2008- A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49, 1955-1969.
Gao, Y., Wei, R., Ma, P., Hou, Z. & Yang, Z., 2009- Post-collisional ultrapotassic volcanism in the Tangra Yumco-Xuruco graben, south Tibet: Constraints from geochemistry and Sr-Nd-Pb isotope. Lithos, 110, 129-139.  
Hafkenscheid, E., Wortel, M. J. R., Spakman, W., 2006- Subduction history of the Tethyan derived seismic tomography and tectonic reconstruction. Tectonics 111, 1-26.
Irvine, T. N. & Baragar, W. R. A., 1971- A guide to the chemical classification of the common volcanic rocks, Canadian journal of earth science, V. 8, P. 523-276.
Jung, S., Hoffe, E. R. &  Hoernes, S., 2007- Neo-Proterozoic rift-related syenites  Northern Damara Belt,Namibia): Geochemical and Nd-Sr-Pb-O isotope  onstraints for mantle sources and petrogenesis Lithos 96 415-435.
Kogarko, L. N., Kononova, V. A., Orlova, M. P. & Woolley, A. R., 1995- The Alkaline Rocks and Carbonatites of the World. Part II: Former USSR. Chapman and Hall, London.
Maggi, A. &  Priestley, K., 2005- Surface waveform tomography of the Turkish-Iranian plateau. Geophysical Journal International 160, 1068-1080.
Mann, U., Marks, M. & Markl, G., 2005- Influence of oxygen fugacity on mineral compositions in peralkaline melts: The Katzenbuckel volcano, Southwest Germany. Lithos, 91, 262-285.
Marks, M., Halama, R., Wenzel, T. & Markl, G., 2004- Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral-melt trace-element partitioning Chemical Geology 211 (2004) 185-215
Menzies, M. A. & Hawkesworth, C. J., Eds., 1987- Mantle Metasomatism. Geology Series, Academic Press, London, 472 p.
Middlemost, E. A. K., 1989- Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77: 19-26.
Mitchell, R. H. & Pllat, R. G., 1979- Nepheline-bearing rocks from the Poohbah Lake, alkaline complex, Ontario; Malignites and malignites; Contributions to mineralogy and petrology, 69, 255-264.
Mitchell, R. H., 1996- Classification of undersaturated and related alkaline rocks. In: R.H. Mitchell, ed., Undersaturated alkaline rocks: mineralogy, petrogenesis, and economic potential, Mineralogical Association of Canada Short Course, 24:1-22.
Muller, D. & Groves, D. I., 1997- Potassic igneous rocks and associated gold copper mineralization. Second edition, Springer Verlag, 242 p.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. &  Jolivet, L., 2008- Arc magmatism and subduction history beneath Zagros: New report of adakites and geodynamic consequences, Lithos, in press.
Pearce, J. A., 1996- Sources and setting of granitic rocks. Episodes, V. 19, N. 4, P. 120-125.
Platevoet, B., Bonin, B., Pupin, J. P.  &  Gondolo,  A., 1988- Les associations acide-basique du magmatisme alcalin anorogenique de CORSE. Bull. Soc. Geol. Fr.., 8 IV: 43-55.
Platt, R. G. 1996- Nepheline syenite complexes - an overview. In Undersaturated alkaline rocks: Mineralogy, petrogenesis and economic potential. Edited by R.H. Mitchell. Mineralogical Association of Canada Short Course Vol. 24, pp. 63-99.
Sorensen, H., 1978- The position ofthe augite syenite and pulaskite in the llimaussaq intrusion, South Greenland Bulletin of the Geological Society of Denmark, 27, special issue, 15-23
Sun, S. S. & McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunder, A.D.,Norry, M.J. (Eds.), Magmatism in the Ocean Basins,vol. 42. Geological Society Special Publication, pp. 313-345.
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P. & Deng, W., 1996- Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalt. J. Petrol. 37, 45-71.
Upadhyay, D., Raith, M. M., Mezger, K. & Hammerschmidt, K., 2006- Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India. Lithos, 89 447-477.
Vuorinen, J. H. T. &  Halenius, U., 2005- Nb-Zr-and LREE-rich titanite from the Alno alkaline complex:Crystal chemistry and its importance as a petrogenetic indicatorLithos 83, 128-142.
Weyer, S., Munker, C. &  Mezger, K., 2003- Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system. Earth Planet. Sci. Lett. 205, 309-324.
Ying, J., Zhang, H., Sun, M., Tang, Y., Zhou, X. & Liu, X., 2007- Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton: Implication for magma mixing of different sources in an extensional regime Lithos 98, 45-66.
Zhao, Z., Mo, X., Dilek, Y., Niu, Y., DePaolo, D. J., Robinson, P. T., Zhu, D., Sun, C., Dong, G., Zhou, S., Luo, Z. &  Hou, Z., 2009-Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultra-potassic magmatism in SW Tibet: Petrogenesis and implications for intra-continental subduction of India beneath southern Tibet. Lithos, 113, 190-212.