Document Type : Original Research Paper

Author

Geology Department, Faculty of Science, PNU (Payame Noor University), Abhar, Iran

Abstract

Chloritoid as one of the common metamorphic mineral in low to medium grade metapelites, is absent in metapelitic rocks of Hamedan area. Comparing with geochemical limitations for Chloritoid appearance in metapelites, whole rock composition of the area is suitable for Chloritoid formation. Since P, T and X are in appropriate range for Chloritoid, the role of fluid could be important. Microscopic investigations show that all metapelitic rocks are in equilibrium with graphite and fluid composition is combination of CO2 and H2O. Based on estimated P and T, highest portion of H2O in the fluid, could be 0.9. Although this is highest approximation, it can conclude that for Chloritoid appearance, XH2O in fluid must be more than 0.9. Since in the Hamedan area staurolite is widespread and Chloritoid is absent - considering almost same composition between chloritoid and staurolite - the composition of fluid is more important. There are many doubts in geochemical limitations for Chloritoid appearance. Considering the results of this study and in the case of attention to fluid composition, geochemical limitations will change and Chloritoid could appear in many rocks, as its higher temperature equivalent, staurolite.    
 

Keywords

References

Albee, A. L., 1972- Metamorphism of pelitic schist, reaction relations of chloritoid and staurolite. Geo. Soc. Am. Bull., 83:3249-3268

Azor, A., Ballevre, M., 1997- Low Pressure metamorphism in the Sierra Albarrana Area (Variscan Belt, Iberian Massif). J. Pet., 38:35-64.

Baharifar, A., Moinevaziri, H., Bellon, H., Pique, A., 2004-The crystalline complexes of Hamadan (Sanandaj-Sirjan zone, western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. C.R. Geoscience , 336.

Connolly, J. A. D., 1995- Phase diagram methods for graphitic rocks and application to the system C-O-H-FeO- TiO2- SiO2. Cont. Min. Pet., 119:94-116.

Connolly, J. A. D., Cesare, B., 1993- C-O-H-S fluid compositions and oxygen fugacity in graphitic metapelites. J. Met. Geo., 11: 379–388.

Deer, W. A., Howie, R. A., Zussman, J., 1982- Rock-Forming Minerals, 1A: Orthosilicates (2nd ed.), John Willy and Sons. 919p.

Droop, G. T. R., Harte, B., 1995- The effect of Mn on the phase relations of medium-grade pelites: Constraints from natural assemblages on petrogenetic grid topology. J. Petrology, 36: 1549-1578

Flinn, D., Key, R. M., Khoo, T. T., 1996- The chloritoid schists of Shetland and their thermal metamorphism. Scottish J. Geology, 32: 67-82

Frey, M., 1978- Progressive Low grade metamorphism of a Black Shale Formation, Central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. J. Petrology, 19:95 135.

Gabriele, P., Ballèvre, M., Jaillard, E., Hernandez, J., 2003- Garnet-chloritoid-kyanite metapelites from the Raspas Complex (SW Ecuador): a key eclogite-facies assemblage. European J. Min., 15:977-989

Ganguly, J. and Newton, R. C., 1968- Thermal stability of chlonitoid at high pressure and relatively high oxygen fugacity. J. Petr., 9,444—466.

Ganguly, J., 1968- Analysis of the stabilities of chionitoid and staurolite and some equilibria in the system FeO—Al503—SiO,—H20-O2. Amer. J. Sd., 266, 277—298.

Ganguly, J., 1969- Chloritoid stability and related parageneses; theory, experiments, and applications. Amer. J. Sc!., 267, 910—944.

Garcia Casco, A., Torres Roldan, R. L., 1999- Natural metastable reactions involving garnet, staurolite and cordierite: implications for petrogenetic grids and the extensional collapse of the Betic-Rif Belt. Cont. Min. Pet., 136: 131-153.

Gibson, R. L., Wallmach, T., 1995- Low pressure high temperature metamorphism in the Verdefort Dome, South Africa: anticlockwise pressure temperature path followed by rapid decompression. Geol. J., 30: 319  331.

Grambling, J. A., 1981- Kyanite, andalusite, sillimanite, and related mineral assemblages in the Truchas Peaks region, New Mexico. Am. Min., 66: 702-722.

Halferdahl, L. B., 1961- Chhoritoid: its composition, X-ray and optical properties, stability and occurrence. J. Pet., 2:49- 135.

‎Holdaway, M. J., 1978- Significance of chloritoid bearing and staurolite bearing rocks in the Picuris Range, ‎New Mexico. Geol. Soc. America Bull., 89:1404 1414.‎

‎Holdaway, M. J., Guidotti, C. V., Novak, J. M. and Henry, W. E., 1982- Polymetamorphism in mediumto high‎grade peletic metamorphic rocks, west central Maine. Geol. Soc. America Bull., 93:572-584.‎

Hosehek, C., 1967- Untersuchungen zum Stabilitatsbereich von Chloritoid und Staurolith. Contr. Min. Petr., 14:123- 162.

Khoo, T. T., 1974- The mineralogy, petrology and geochemistry of regional and thermal Dunrossness Phyllites from south Mainland, Shetland. University of Liverpool, Ph.D. thesis (unpublished).

Kohn, M. J., Spear, F.S., 1993- Phase equilibria of margarite-bearing schists and chloritoid+hornblence rocks from western New Hampshire, U. S. A. J. Pet., 34: 631-651.

Likhanov, I. I., Reverdatto V. V., Sheplev V. S., Verschinin A. E., Kozlov P. S., 2001- Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian region of the Yenisey Ridge, eastern Siberia, Russia. Lithos, 58: 55-80.

Mengel, F., Rivers, T., 1994- Metamorphism of pelitic rocks in the Paleoproterozoic Ramah Group, ‎Saglek area, Northern Labrador: mineral reactions, P-T conditions and influence of bulk ‎composition. Can. Min.‎

Moazzen, M., 2004- Chlorite-Chloritoid-Garnet Equilibria and geothermometry in the Sanandaj-Sirsan metamorphic belt, Southern Iran, Iranian J. Science & Technology, Transaction A, 28: 65-78

Ohmoto, H., Kerrick, D., 1977- Devolatilization equilibria in graphitic systems. Am. J. Sci., 277: 1013-1044.

Phillips, G. N., 1987- The metamorphism of the Witwatersrand gold fields. J. Met. Geo, 5:307-22

Stöcklin, J., 1968- Structural history and tectonics of Iran; a review. AAPG Bull., 52: 1229-1258.

Stuwe, K., Ehlers, K., 1997- Multiple metamorphic events at Broken Hill, Australia. Evidence from Chloritoid-bearing paragenesis in the Nine-mile region. J. Pet., 38:1167-1186.

Vidal, O., Theye, T., Chopin, C., 1994- Experimental study of chloritoid stability at high pressure and various FO2 conditions. Cont. Min. Pet., 118:256-270.

Wang, P., Spear, F. S., 1991- A feild and thoritical analysis of garnet + chlorite + chloritoid + biotite assemblages from the tri-state (MA,CT, NY) area, USA. Cont. Min. Pet., 106: 217-235

Wei, C. J., Song, S. G., 2008- Chloritoid–glaucophane schist in the north Qilian orogen, NW China: phase equilibria and P–T path from garnet zonation. J.  Met. Geology, 26:  301-316

Whitney, D. L., Mechum, T. A., Kuehner, S. M., Dilek, Y. R., 1996- Progressivc metamorphism of peletic rocks from protolith to granulite facies, Dutchess County, New York, USA: constraints on the timing of fluid infiltration during regional metamorphism. J. Met. Geol., 14: 163  181.

Winkler, H. G. F., 1976- Petrogenises of metamorphic rocks, 3rd Edition, New York, 334 p