Document Type : Original Research Paper

Authors

1 Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran

2 Research Institute of Petroleum Industry, Tehran, Iran

3 Ferdoosi University, Mashhad, Iran

Abstract

The Ziyarat Formation is an Upper Paleocene to Middle Eocene carbonate sequences, located in North of Tochal Village (south-east of Tehran), near Emam Zadeh Abdollah. The Ziyarat Formation with the total thickness of 212.5 m conformably overlies the Fajan conglomerate and is overlain by greenish tufaceous siltstone of the Karj Formation. Petrographic studies led to the recognition of 11 microfacies. Different facies and evidences such as the absence of reefal facies, calciturbidite deposits, and widespread tidal flat deposits indicate that the Ziyarat Formation was deposited in a homoclinal carbonate ramp environment. Micritization, cementation, compaction, neomorphism, dissolution, dolomitization, fracturing and silicification are the major diagenetic processes in the Ziyarat Formation, occurring in meteoric and burial diagenetic environments. Major and minor elements and oxygen and carbon isotope values indicate that Ziyarat carbonates were deposited in a shallow warm water tropical environment and original carbonate mineralogy was aragonite. Bivariate plots of Mn versus Sr/Ca and δ18O illustrate that Ziyarat limestones were affected by open system diagenesis with high water/rock interaction. Early burial diagenetic temperature calculation based on heaviest oxygen isotope values of micrite and δw of Eocene seawater of 0.85 SMOW, shows that temperature was around 39˚C. Cathodluminescence studies of carbonate cements illustrated dull luminescence, because these carbonates afftected by both meteoric and burial diagenesis, and thus typical yellow to orange luminescence and zonations, evidence of meteoric diagenesis, are absent. This statement is confirmed by isotropic evidences. 

Keywords

References
Adabi, M. H. & Asadi Mehmandosti, E., 2008- Microfacies and geochemistry of the Illam Formation in the Tang-e Rashid area, Izeh, S.W. Iran. Journal of Asian Earth Sciences, 33: 267-277. 
Adabi, M. H., & Rao, C. P., 1991- Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonate (Mozduran Formation), Sarakhs area, Iran: Sedimentary Geology, 72:253-267.
Adabi, M. H. & Rao, C. P., 1996-  Petrographic, elemental and isotopic criteria for the recognition of carbonate mineralogy and climates during the Jurassic (examples from Iran and England): 13th Geological Convenstion, Australia, (Abstract), p. 6.
Adabi, M. H., 1996- Sedimentology and geochemistry of carbonates from Iran and Tasmania, Ph.D. thesis (Unpublished). University of Tasmania. Australia. 470p.
Anderson, T. F. & Arthur, M. A., 1983- Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenviromental problems: in Stable Isotopes in Sedimentary Geology: Society of Economic, Paleontology and Minaralogy, Short Course, 10: Section 1.1-1.151.
Baron, M. & Parnell, J., 2007- Relationships between stylolites and cementation in sandstone reservoirs: Examples from the North Sea, U.K. and East Greenland Sedimentary Geology, 194: 17-35.
Boever, E. D., Swennen, R. & Dimitrov, L., 2006- Lower Eocene carbonate cemented chimneys (Varna, NE Bulgaria): Formation mechanisms & the (a) biological mediation of chimney growth. Sedimentary Geology, 185: 159-173. 
Brand, U. & Veizer, J., 1980- Chemical diagenesis of multicomponent carbonate system-1: trace element: Journal of Sedimentary Petrology, 50: 1219-1236.
Buchbinder, B. & Friedman, G. M., 1970- Selective dolomitization of micrite envelopes: a possible clue to original mineralogy. Journal of Sedimentary Petrology, 40: 514-517.
Choquette, P. W. & Pray, L., 1970- Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologist Bulletin, 54: 207-250.
Dellenbach, J., 1964- Contrbution a l`etude geologique de la region situee a l`Est de Teheran. These Univ. Strasbourg, 120p.
Dickson, J. A. D., 1965- A modified staining technique for carbonate in thin section: Nature, 205: 587.
Dunham, R. J., 1962- Classification of carbonate rocks according to depositional texture. In W. E. Ham (ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologist, Memoir, 1:108-121.
Flügel, E., 2004- Microfacies Analysis of Limestone: Analysis, Interpretation and Application, Springer Verlag, Berlin, 976 p.
Folk, R. L., 1965-  Some aspects of recrystalization in ancient limestone: in Pray, L.C., (ed.), Dolomitization and Limestone Diagenesis:  Society of Economic Paleontology and Mineral. Special. Publication, 13: 14-48.
González, L. A., Carpenter, S.J. & Lohmann, K.C., 1992- Inorganic calcite morphology: roles of fluid chemistry and fluid flow: Journal of Sedimentary Petrology, 62: 382-399.
James, N.P. & Choquette, P.W., 1984 - Diagenesis 9. Limestones - the meteoric diagenetic environment. Geoscience Canada, 11: 161-194.
Kiaho, K., Takeda, K., Petrizzo, M.R., & Zachos, J., 2006 - Anomalous shifts in tropical Pacific planktonic and benthic foraminiferal test size during the Paleocene–Eocene thermal maximum. Palaeogeography, Palaeoclimatology Palaeoecology, 237: 456-464. 
Kim, J. C., Lee, Y. I. & Hisada, K., 2007- Depositional and composition controls on sandstone diagenesis, the Tetori Group (Middle Jurassic-Early Cretaceous), Central Japan. Geology, 195: 183-202.
Lohmann, K. C., 1988 - Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James, N.P. and Choquette, P.W. (eds.): Paleokarst. Springer Verlag, Berlin. 58-80.
Marshall, J. D., 1992-  Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation: Geological Magazine, 129:143-160.
Molennar, N., Cyziene, J. & Sliaupa, S., 2006- Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstone. Sedimentary Geology, 1-25.
Morse, J. W. & Mackenzie, F. T., 1990- Geochemistry of Sedimentary Carbonates, Development in Sedimentology, Amsterdam (Elsevier), 48: 707 p.
Milliman, J. D., 1974- Marine Carbonates, Springer-Verlag, New York. 375 p.
Nogole-Sadate, M.A,A., 1978- les zones de decrochement  et les virgations structurales en Iran. Concequences des resultants de l`analyse structurale de la reigon de Qom. These Univ. Scientifique et Medicate de Grenoble, 201 p.
Parcerisa, D., Gomez-Graz, D., Trave, A., Martin, J.D. & Maestro, E., 2006- Fe and Mn in clacites cementing red beds: a record of oxidation-reduction conditions examples from the Catalan Coastal Ranges (NE Spain). Jour. Geochem. Exporation, 89: 318-322.
Rao, C. P., 1981- Geochemical differences between tropical (Ordovician) and subpolar (Permian) carbonates, Tasmania, Australia. Geology, 9: 205-209.
Rao, C. P., 1991- Geochemical differences between subtropical (Ordovician), cool-temperate (recent and Pleistocene) and subpolar carbonates, Tasmania, Australia. Carbonates and Evaporites, 6: 83-106.
Rao, C. P., 1996-  Elemental composition of marine calcite from modern temperate shelf brachiopods, bryozoans and bulk carbonates, eastern Tasmania, Australia:  Carbonates and Evaporites, 11: 1-18.
Reichart, G. J., Jorissen, F., Anschutz, P. & Mason, P. R. D., 2003- Single foraminiferal test chemistry records the marine environment. Geology, 31:355-358. 
Schlanger, S.O., 1988- Strontium storage and release during deposition and dia-genesis of marine carbonates related to sea level variations in: (A. Lerman & M. Maybeck, Eds.) Physical and Chemical Weathering in Geochemical Cycles, 323-339. 
Schmid, S., Worden, R. H. & Fisher, Q. J., 2004- Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland  Marine and Petroleum Geology, 21: 299-315.
Stoll, H. M. & Schrag, D. P., 1998- Efects of Quaternary sea level cycles on stron-tium in seawater. Geochimical osmochimochimical Acta, 62: 1107-1118.
Tucker, M. E. & Wright, V. P., 1990- Carbonate Sedimentology Blackwell. 482 p., Oxford.
Tucker, M. E., 2001- Sedimentary Petrology. Third Edition, Blackwell, Oxford, 260p.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Goddris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. & Strauss, H., 1999- 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161:59-88.
Veto, I., Ozsvárt, P. & Futó, I., Hetényi. Extension of carbon flux estimation to oxic sediments based on sulphur geochemistry and analysis of benthic foraminiferal assemblages: A case history from the Eocene of Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology: In press.