Document Type : Original Research Paper


1 M.Sc., Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

2 Associate Professor, Research Institute for Earth Sciences, Geological Survey of Iran; Islamic Azad University, North-Tehran Branch, Tehran, Iran

3 Associate Professor, Research Institute for Earth Sciences, Geological Survey of Iran; Islamic Azad University, Islamshahr Branch, Islamshahr, Iran

4 Assistant Professor, Department of Geology, Faculty of Science, University of Isfahan, Isfahan, Iran

5 Associate Professor, Department of Geology, Sciences Faculty, Urmia University, Urmia, Iran


Mesgarabad area is located in ~10 km southeast of Tehran, the Central- Alborz structural zone (CASZ) of Iran. The rock units exposed in the area consist of Eocene volcanics, volcano-sedimentary and sedimentary rocks intruded by post upper Eocene granodiorite to quartz monzo-diorite. These subvolcanic intrusive bodies show porphyroid to microgranular textures and have calc-alkaline magmatic nature. These bodies produced hydrothermal fluids causing extensive alteration zones developed along the Se-Darreh-e-Bozorg strike-slip fault. The effects of hydrothermal fluids on the entire Eocene rock units and subvolcanic intrusive bodies are remarkable. The main alterations are silicification, sericitization, chloritization, epidotizaton, actinolitization, argillization, carbonatization, and alunitization-jarositization, which provided suitable physico-chemical conditions for ore-mineralization. The penetration of subvolcanic intrusive bodies into the Eocene volcanics, volcano-sedimentary and sedimentary rocks brought about skarn mineralization and epithermal barite veins. Microscopic studies and advanced analysis showed that the principal mineral phases in the epithermal zones are magnetite, pyrite, chalcopyrite, bornite, chalcocite, barite, Cu+Sn+Fe alloy, hematite, psilomelane, jacobsite, martite, geothite, and lepidochrosite. The skarnification processes occurred at two distinct stages, (1) progressive and (2) retrogressive. The pyrometasomatic anhydrous minerals such as andradite-grossularite formed during progressive stage and the hydrous minerals like epidote, chlorite, tremolite- actinolite, calcite, quartz, pyrite, chalcopyrite and chalcocite were developed during retrogressive stage. Fluid inclusion studies on primary aqueous inclusions trapped in barite crystals revealed fluid that mixing of two fluids having different physico-chemical conditions played an important role for ore deposition.


Atkinson, JR. and Einaudi, M. T., 1978- Skarn formation and mineralization in the contact aureole at carr fork, bingham, utah,
Economic Geology, vol 73, pp. 1326-1365.
Carig, J. R. and Vaughan, D. J., 1981- Ore microscopy and ore petrography, Wiley. 433p.
Clarke, D. B., 1992- Granitoid Rock, Chapman and Hall, London, 285p.
De La Roche, H., Leterrier, P., Grandclaude, P. and Marchal, M., 1980- A Classification of Volcanic and Plutonic Rocks Using the R1-R2 Diagram and Major Element Analyses. Its Relationships with Current Nomenclature, Chemical Geology, 29, 183-210.
Deer, W. A., Howie, R. A. and Zussman, J., 1991- an introduction to the rock forming minerals, seventeenth impression Longman, 528 p.
Einaudi, M. T., Meinert, L. D. and Newberry, R. J., 1981- Skarn deposits, Economic Geology, 75th anniv. Vo1.p.317-391.
Engalene, M., 1968- Geologie, geomorphologie, hydrogeology de la region de Tehran (IRAN). Theses Science, Montpellier, P.180.
Hedenquist, J. W., Arribas, A. and Gonzales- Urlen, E., 2000- exploration for epithermal gold deposits, in sec reviews, v.13, p. 245-277.
Henley, B. W. and Ellis, A. J., 1983- Geothermal Systems ancient and Modern: a Geochemical Review, Earth- Science  Reviews, V.19, No.1, P. 1-50.
Henning , D., Lehmann, B., Burgess, R. and Tak, M. A. N. 2008- Geology, Geochemistry and 40Ar/39Ar ages of the Cerro Millo epithermal high- sulfidation gold prospect, Southern Peru, Ore Geology Reviews.
Irvine, T. N. and Baragar, W. R. A., 1971- A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–548.
James, N. P. and Jones, B., 2015- Origin of carbonate sedimentary rocks, ISBN: 978-1-118-65270-1, 464 pages.
Lentz, D.R., Walker, J.A. & Stirling, J.A.R. 1995. Millstream Cu-Fe Skarn Deposits: An Example of A Cu-Bearing Magnetite-Rich Skarn System In Northern New Brunswick. Exploration And Mining Geology 4, 15ð31.
Liu, X., Liu, W. and Si, C., 2016- Fluid metasomatic genesis of stratiform skarn in the Suoerkuduke Cu-Mo deposit, East Junggar, NW China. Ore Geology Reviews, 78, 239-251. 
Mao, J. W., Wang, Y. T., Li, H. M., Pirajno, F., Zhang, C. Q. and Wang, R. T., 2008- The Relationship Of Mantle –Derived Fluids To Gold Metalogenesis in The Jiaodong Peninsula: Evidence From D-O-C-S Isotope Systematics, Ore Geology Review 33, 361-381.
Martin-Izard, A., Fuertes Fuente, M., Cepedal, A., Moreiras, D., Nieto, J.G., Maldonado, C. & Pevida, L.R. 2000. The Rio Narcea Gold Belt Intrusions: Geology, Petrology, Geochemistry And Timing. Journal of Geochemical Exploration 71, 103ð117.
Meinert, L. D., 1992- Skarn and Skarn Deposit. Geosci.Canada, V11.
Meinert, L., Dipple, G.  and  Nicolescu, S., 2005- World skarn deposits. Economic Geology 100th Anniversary Volume, 299–336.
Meza-Figueroa, D., Valencia-Moreno, M., Valencia, V. A., Ochoa-Landin, L., Perez-Segura, E. & Diaz-Salgado, C., 2003- Major And Trace Element Geochemistry And 40ar/39ar Geochronology Of Laramide Plutonic Rocks Associated With Gold-bearing Fe skarn deposits in Guerrero state, southern Mexico. Journal of South American Earth Sciences 16, 205Ð217.
Middlemost, E. A. K., 1994- Naming materials in the magma/igneous rock system: Earth Science Reviews, v. 37, no. 1, pp. 215-224.
Murakami, H., 2005- How to Study Skarn Type Deposits, Remote Sensing Center, Mta.
Nakano, T., 1989- Fluctuation model for compositional heterogeneity in skarn clinopyroxenes. Geochemical Journal 23(3): 91-99.
Nelson, S. T. & Montana, A., 1992- Sieve-Textured Plagioclase in Volcanic Rocks Produced by Rapid Decompression. American Mineralogist, 77:1242-1249.
Purtov, V. K., Kholodnoc, V.  V., Anfilogov, V. N. and Nechkin, G. S., 1989- The role of chlorine in the formation of magnetite skarn. International Geology Review 31: 63–71.
Ray, G. E.  and Webster, I. C. L. 1991- An overview of skarn deposit, in ore deposits, tectonic and metallogeny in the Canadian cordillera, British Colombia Ministry of Energy, mines and petroleum resources, paper 1991-4, 213-252.   
Roedder, E., 1984- Fluid inclusion n: Reviews in Mineralogy, v.12, Miner. Soc. Am. Resten, Virginia.
Rouse, J., 1986- Garnet, Butterworth-Heinemann, First Edition, ~1st Printing edition.
Shand, S. J., 1943- Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. New York: John Wiley & Sons.
Shepherd, T. J., Rankin, A. H. and  Aldertone, D. H. M., 1985- A Practical Guide to Fluid Inclusion Studies, Blackie, Glasgow.
Stocklin, J., 1968- Structural History and Tectonic of  Iran, a Review, American Association. Petroleum Geologist52(7), 1229-1258.
Stoffregen, R., 1987- Genesis of acid- sulphate alteration and Au-Cu-Ag Mineralization, at Summitvill, Colourado, Economic Geology, 82,1575-1591.
Taylor, S. R. and Mclennan, S. M., 1985- The Composition And Evolution Of The Continental Crust: Rare Scientific Publication, Carlton, 312p.
Tombros, S., Seymour, K.St, Williams-Jones, A. E. and Spry, P., 2oo7- The genesis of epithermal Au-Ag-Te mineralization, Panormos bay, Tinos island, cyclades, Greece. Economic Geology, 102(7) 1269-1294.
Wilkinson, J.J., 2001- fluid inclusions in hydrothermal ore deposits, lithos55, 229-272.
Zhang, Z. H., Mao, J. W., Wang, Y. B., Pirajno, F., Liu, J. L. and  Zhao, Z. D., 2010- Geochemistry And Geochronology Of The Volcanic Rocks Associated with The Dong an Adularia –Sericite epithermal gold deposits, Lesser Hinggan Range, Heilongjiang Province, NE China: Constraints on the Metallogenesis. Ore Geology Review 37, 158-174.
Zhu, Y. F., Jiang, N. and  Zeng, Y. S., 2001- Geochemistry of the ore-forming fluids in gold deposits from the Taihang Mountain, Northern China. international geology review 43, 457-473.