Document Type : Original Research Paper

Authors

Department of Geology, Faculty of Sciences, University of Zanjan

Abstract

Tashvir ore occurrence, 75 km northeast of Zanjan, is located in the Tarom-Hashtjin subzone. Mineralization occurs as ore-bearing quartz vein-veinlets within the Eocene tuffs and andesitic lavas (equal to Karaj Formation). Ore minerals include chalcocite, chalcopyrite and galena, and quartz, calcite and chlorite are present as gangue minerals at Tashvir. The ore show vein-veinlets, breccia, disseminated, replacement, relict, colloform, crustiform, dog tooth and plumose textures. Four stages of mineralization can be distinguished at Tashvir. These stages are progressed from quartz- chalcocite- chalcopyrite- galena‒cemented veins and breccias (stage-1), individual or sets of quartz veinlets (stage-2), and vug infill calcite (stage-3) and chlorite (stage-4) vein-veinlets. Hydrothermal alteration consist of silicified, argillic, carbonatic and chloritic. In the outer parts of the mineralization zones, alteration is propylitic. Similar REE patterns of the mineralized veins and the host rocks indicate they are genetically related. Enrichment of ore-forming elements (Ag, Cu, Pb, Zn) in ore zones is specifies leaching of elements from altered host rocks to ore zones. Characteristics of Tashvir ore occurrence are comparable with intermediate-sulfidation style of epithermal base metal (Ag) deposits. Mineralization at Tashvir and other epithermal deposits of the Tarom-Hashtjin subzone took place as a result of hydrothermal activity related to the late Eocene magmatism, and is controlled by fault systems. Therefore, investigation of the altered Eocene volcanic and volcano-sedimentary rocks, especially at the composite place of granitoid intrusions and along the fault structures, became the most favorable locus for epithermal ore bodies at Tarom-Hashtjin subzone.

Keywords

Main Subjects

References
Alavi, M., 1994- Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229: 211‒238.
Alderton, D. M. H., Pearce, J. A. and Potts, P. J., 1980- Rare earth element mobility during granite alteration: evidence from southwest England. Earth Planet Scientific Letters 49(1): 149–165.
Bienvenu, P., 1990- MORB alteration: Rare earth element/non-rare hydromagmaphile element fractionation. Chemical Geology 82: 1–14.
Brunsmann, A., Franz, G. and Erzinger, J., 2001- REE mobilization during small-scale high-pressure fluid-rock interaction and zoisite/fluid partitioning of La to Eu. Geochemica et Cosmochimica Acta 65(4): 559–570.
Cooke, D. R. and Simmons, S. F., 2000- Characteristics and genesis of epithermal gold deposits. Economic Geology 13: 221–244.
Esmaeli, M., Lotfi, M. and Nezafati, N., 2015- Fluid inclusion and stable isotope study of the Khalyfehlou copper deposit, southeast Zanjan, Iran. Arabian Journal of Geosciences 8: 9625–9633.
Galoyan, R. Y., Sosson, M., Corsini, M., Billo, S., Verati, C. and Melkonyan, R., 2009- Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic back-arc opening and hot spot event between south Armenia and Eurasia. Journal of Asian Earth Sciences 34(2): 135–153.
Ghasemi Siani, M., Mehrabi, B., Azizi, H., Wilkinson, C. M. and Ganerod, M., 2015- Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran. Open Geosciences 7: 207–222.
Giere, R. and Williams, C. T., 1992- REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy). Contributions to Mineralogy and Petrology 112(1): 83–100.
Gramaccioli, C. M., Diella, V. and Demartin, F., 1999- The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: some complexes in minerals. European Journal of Mineralogy 11(6): 983–992.
Hedenquist, J. W., Arribas, A. R. and Gonzalez-Urien, E., 2000- Exploration for Epithermal Gold Deposits. Reviews in Economic Geology 13: 245–277.
Hirayama, K., Samimi, M., Zahedi, M. and Hushmand-Zadeh, A., 1966- Geology of the Tarom District, Western Part (Zanjan area north-west Iran), Geological Survey of Iran, Report 8, 31 p.
Humphris, S. E., 1984- The mobility of the rare earth elements in the crust. In: P. Henderson (Ed.), Rare earth element geochemistry. Elsevier, Amsterdam, 317–342.
Kikawada, Y., Ossaka. T., Oi, T. and Honda, T., 2001- Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water, Chemical Geology 176(1-4): 137–149.
Kouhestani, H., Azimzadeh, A. M., Mokhtari, M. A. A. and Ebrahimi, M., 2017- Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. Neues Jahrbuch für Mineralogie Abhandlungen (Journal of Mineralogy and Geochemistry) 194 (2): 139–155.
Kouhestani, H., Ghaderi, M., Zaw, K., Meffre, S. and Emami, M. H., 2012- Geological setting and timing of the Chah Zard breccia-hosted epithermal gold-silver deposit in the Tethyan belt of Iran. Mineralium Deposita 47: 425–440.
Kouhestani, H., Mokhtari, M. A. A., Chang, Z. and Johnson, C. A., 2018- Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews 93: 1–18.
Lottermoser, B. G., 1992- Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews 7(1): 25–41.
Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M. and Marsh, E. E., 2016- Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geology Reviews 78: 41–57.
Murphy, J. B. and Hynes, A. J., 1986- Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two metabasaltic suites in the Appalachians. Canadian Journal of Earth Sciences 23(8): 1138–1144.
Nabatian, G., Ghaderi, M., Corfu, F., Neubauer, F., Bernroider, M., Prokofiev, V. and Honarmand, M., 2014a- Geology, alteration, age and origin of iron oxide–apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran. Mineralium Deposita 49 (2): 217–234.
Nabatian, G., Ghaderi, M., Daliran, F. and Rashidnejad-Omran, N., 2013- Sorkhe-Dizaj iron oxide-apatite ore deposit in the Cenozoic Alborz–Azarbaijan magmatic belt, NW Iran. Resourse Geology 63: 42–56.
Nabatian, G., Ghaderi, M., Neubauer, F., Honarmandc, M., Xiaoming, L., Dong, Y, Jiang, S. H., Quadt, A. and Bernroider, M., 2014b- Petrogenesis of Tarom high-potassic granitoids in the Alborz–Azarbaijan belt, Iran: Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos 184-187: 324–345.
Nabatian, G., Jiang, S. Y., Honarmand, M. and Neubauer, F., 2016- Zircon U–Pb ages, geochemical and Sr–Nd–Pb–Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos 244: 43–58.
Rollinson, H. G., 1993- Using geochemical data: evaluation, presentation and interpretation. Longman Geochemistry Series, London, 352 pp.
Stöcklin, J. and Eftekhārnezhād, J., 1969- Geological map of Zanjan, scale: 1:250,000. Geological Survey of Iran.
Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry. M.J., (Eds), Magmatism in the Ocean Basins. Geological Society of London, Special Publication 42, 313–345.
Whitford, D. J., Korsch, M. J., Porritt, P. M. and Craven, S. J., 1988- Rare earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia. Chemical Geology 68(1–2): 105–119.
Whitney, D. and Evans, B. W., 2010- Abbreviations for names of rock-forming minerals. American Mineralogist 95: 185–187.
Yasami, N., Ghaderi, M., Madanipour, S. and Taghilou, B., 2017- Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran. Ore Geology Reviews 86: 212–224.
Yilmaz, H., Oyman, T., Sonmez, F. N., Arehart, G. B. and Billor, Z., 2010- Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/western Turkey). Ore Geology Reviews 37(3): 236–258