Document Type : Original Research Paper

Authors

1 Assistant Professor, Department of Economic Geology, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran

2 Department of Economic Geology, Tarbiat Modares University, Tehran

3 Department of Geology, Kharazmi University, Tehran

4 U.S. Geological Survey, Denver Federal Center, Denver, Colorado

Abstract

Barika gold (and silver)-rich volcanogenic massive sulfide deposit is located 18 km east of Sardasht city in the northwestern of Sanandaj–Sirjan metamorphic Zone. The rocks in the vicinity of the Barika deposit predominantly consist of Cretaceous volcanosedimentary sequences of phyllite, slate, andesite and tuffite, metamorphosed under greenschist facies grade. Barika deposit is composed of stratiform ore and stringer zone that both are hosted in an altered and sheared metaandesite unit. Fluid inclusion studies indicated that quartz (stringer zone) and barite (stratiform ore) samples homogenized between 132° and 283°C. Salinities of the fluids inclusions show a range from 1.4 to 9.6% wt NaCl equivalent that are close to that of normal seawater. The study indicates the colling occurred in the initial ore fluids, as a result of mixing with sea water, is an important process in the formation of Barika deposit. The δ34S values of sulfide minerals (pyrite, sphalerite and galena) from stockwork mineralization in the Barika deposit range from -0.8 to +5.6 per mil and fall within the range of values observed for volcanogenic massive sulfide deposits. The narrow range of measured δ34S values from the sulfide minerals suggests that similar to almost of Kuroko VMS deposits, the ore-forming sulfur derived from the leaching of igneous sulfur from the underlying andesitic rocks. Calculated sulfur isotope temperatures for twelve coexisting galena-sphalerite and galena-pyrite pairs range from 146-293 ْ C that is consistent with temperatures estimated from fluid inclusion studies.

Keywords

Main Subjects

References
Azizi, H. and Jahangiri, A., 2008- Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. J. Geodyn. 45: 178- 190.
Azizi, H. and Moinevaziri, H., 2009- Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics 47: 167- 179.
Dubé, B., Mercier-Langevin, P., Hannington, M., Davis, D. and Lafrance, B., 2004- Le gisement de sulfures massifs volcanogènes aurifères LaRonde, Abitibi, Québec: altération, minéralisations, genèse et implications pour l'exploration. Ministères des Resources naturelles de la faune et des parcs. MB 2004-03. 112 p.
Franklin, J. M., Gibson, H. L., Jonasson, I. R. and Galley, A. G., 2005- Volcanogenic massive sulfide deposits. Economic Geology 100th Anniversary Volume, 523- 560.
Goldfarb, R. J., Baker, T., Dube, B., Groves, D. I., Hart, C. J. R., Gosselin, P., 2005- Distribution, character and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary Volume, pp 407- 450.
Hofes, J., 2009- Stable Isotope Geochemistry, Springer, 6th edn, 285 p.
Huston, D. L., 2000- Gold in volcanic-hosted massive sulfide deposits: distribution, genesis, and exploration, in Hagemann, S.G. ed., Gold in 2000: Reviews in Economic Geology, 13: 401- 426.
Kerrich, R., Goldfarb, R. J. and Richards, J. P. R., 2005- Metallogenic Provinces in an Evolving Geodynamic Framework. Economic Geology 100th Anniversary Volume, pp 1097- 1136.
Large, R. R., Huston, D. L., McGoldrick, P. J. and Ruxton, P. A., 1989- Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models. Economic Geology Monograph 6, 520- 536.
Li, Y. and Liu, J., 2006- Calculation of sulfur isotope fractionation in sulfides. Geochimica et Cosmochimica Acta 70: 1789- 1795.
Mohajjel, M., 1997- Structure and tectonic evolution of Palaeozoic- Mesozoic rocks, Sanandaj±Sirjan Zone, western Iran. Ph.D. thesis, University of Wollongong, Wollongong, Australia (unpublished).
Mohajjel, M., Fergusson, C. L. and Sahandi, M. R., 2003- Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences 21: 397- 412.
Ohmoto, H., 1972- Systematic of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology 67(5): 551- 579. .
Ohmoto, H., 1986- Stable isotope geochemistry of ore deposits. In: Valley JM, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16: 491- 560.
Ohmoto, H., 1996- Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geology Reviews, 10: 135- 177.
Ohmoto, H., and Rye, R. O., 1979- Isotopes of sulfur and carbon. In: Geochemistry of Hydrothermal Ore Deposits, 2nd edn. Holt Rinehart and Winston, New York.
Ohomot, H., Mizukami, M., Drummond, S. E., Eldridge, C. S., Pisutha–Arnond, V. and Lenagh, T. C., 1983- Chemical processes of Kuroko formation. Economic Geology Monograph 5: 570- 604.
Pisutha–Arnond, V. and Ohmoto, H., 1983- Thermal history and chemical and isotopic compositions of the ore–forming fluids responsible for the Kuroko massive sulfide deposits in the Hokuroko district of Japan. Economic Geology Monograph 5: 198- 223.
Poulsen, K. H., Robert, F. and Dubé, B., 2000- Geological Classification of Canadian Gold Deposits: Geological Survey of Canada Bulletin 540, 106 p.
Roedder, E., 1984- Fluid inclusions. Mineralogical Society of America, Reviews in Mineralogy, 12, 644 p.
Rollinson, H. R., 1993- Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, London, 352 p.
Rye, R. O. and Ohmoto, H., 1974- Sulfur and carbon isotopes in ore genesis: a review. Economic Geology 69: 826- 842.
Seccombe, P. K., Spry, P. G., Both, R. A., Jones, M. T. and Schiller, J. C., 1985- Base metal mineralization in the Kaumantoo Group, South Australia: a regional sulfur isotope study. Economic Geology 80: 1824- 1841.
Sheikholeslami, M. R., 2002- Evolution structurale et me´tamorphique de la marge sud de la microplaque de l’Iran central: les complexes me´tamorphiques de la re´gion de Neyriz (Zone de Sanandaj-Sirjan), The`se, universite´ de Brest, 194p.
Shepherd, T. J., Rankin, A. H. and Alderton, D. H. M., 1985- A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow, 239 p.
Skauli, H., Boyce, A. J. and Fallick, A. E., 1992- A sulphur isotopic study of the Bleikvassli Zn-Pb-Cu deposit, Nordland, northern Norway. Mineralium Deposita 27: 284- 292.
Solomon, M., Tornos, F., Large, R. R., Badham, J. N. P., Both, R. A. and Zaw, K., 2004- Zn–Pb–Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide depo sition. Ore Geology Reviews 25: 259- 283.
Taylor, H. P. Jr., 1986- The oxygen isotope geochemistry of igneous rocks: Contributions to Mineralogy and Petrology 19: 1- 71.
Urey, H. C., 1947- The thermodynamic properties of isotopic substances. Journal of Chemical Society 562- 581.
Valenza, K., Moritz, R., Mouttaqi, A., Fontignie, D. and Sharp, Z., 2000- Vein and karst barite deposits in the western Jebilet of Morocco: fluid inclusion and isotope (S, O, Sr) evidence for regional fluid mixing related to central Atlantic Rifting. Economic Geology 95(3): 587- 606.
Wilkinson, J. J., 2001- Fluid inclusions in hydrothermal ore deposits. Lithos 55: 229- 272.