Document Type : Original Research Paper

Authors

1 M.Sc. Student, Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor, Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

3 Professor, Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

4 Assistant Professor, Department of Geology, Faculty of Sciences, Yazd University, Yazd, Iran

5 M.Sc., Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The study area is located in the east of Yazd and is part of Yazd block (western block of central Iran). There are two major fault systems, Anar and Kharanagh with lengths of 100 and 62 km and numerous minor faults represents an important tectonic phenomenon in the region. The aim of this study is to investigate neotectonics in this area by using geomorphic indicators. To achieve this goal, have been used of seven geomorphic indicators: Hypsometric integral (HI), Drainage basin asymmetry factor (AF), Stream length- gradient index (SL), Mountain Front sinuosity (Smf) and the ratio of valley floor width to depth Valley (Vf), River sinuosity index (S), Basin shape factor (Bs). Based on Active tectonics indices (Iat), the study area is divided in Four terms of tectonic activity rates, category 1 (very high tectonic activity, 7.4% of the region), category 2 (up 74%), category 3 (average 11%) and category 4 (less 7.4%). Morphotectonical and morphological evidences indicate that the rate of tectonic activity in this region is moderate to high. According these evidences, the northern part of Kharanagh fault and southwestern part of Anar fault are more active than other parts.
 

Keywords

References

Bull, W. B. and McFadden, L. D., 1977- Tectonic geomorphology north and south of the Garlock fault, California, In: Doehring, D.O (Ed.), Geomorphology in Arid Regions, Proceedings of the Eighth Annual Geomorphology Symposium, State University of New York, Binghamton, pp. 115- 138.
Cannon, P. J., 1976- Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin. Geology Notes, V. 36 (1), pp. 3- 16.
El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. and Keller, E. A., 2008- Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, V. 96, pp. 150- 173.
Fortes‚ E., Stevaux, J. C. and Volkmer, S., 2005- Neotectonics  and  Channel  evolution  of  the  Lower  Ivinhema  River: A right bank  tributary  of  the  upper  parana  River‚ Brazil‚ Geomorphology‚ V. 70‚ No. 3- 4‚ pp 325- 338.
Keller, A. and Pinter, N., 1996- Active tectonics: earthquakes, uplift, and landscape, Prentice-Hall.
Krzyszkowski‚ D.‚ Przybyiski‚ B. and Badura‚ J., 2000- The roie of geotectonic and glaciations on terrace formation along the Nysa kodzka River in the Sudeten Mountains (southwestern Poland) ‚ Geomorphology‚ V. 23‚ No. 3- 4‚ pp149- 166.
Latrubesse‚ E. M. and Rancy, A., 2000- Neotectonic  influence  on  tropical  rivers   of  south  western  Amazon   during  the late  quaternary: the Moa and  Ipixuna  river  basins‚ Brazil‚ Quaternary International‚ V. 72‚ No. 1‚ pp67- 72.
Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignieres, M., Nankali, H. and Van Gorp, S., 2007- Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran. Geophysical Journal International 170, 436- 440
Meyer, B. and Le Dortz, K., 2007- Strike-slip kinematics in Central and Eastern Iran: estimating fault slip-rates averaged over the Holocene. Tectonics, 26 ,TC5009, doi:10.1029/2006TC002073.
Ramirrez-Herrera, M. T., 1998- Geomorphic assessment of active tectonics in the Acambay graban, Mexican Volcanin belt, Earth surface process and land froms. V. 23, pp. 317- 322.
Rockwell, T. K., Keller, E. A., Clark, M. N. and Johnson, D. L., 1984- Chronology and rates of faulting of Ventura River terraces, California, Geological Society of America Bulletin, V. 95, pp. 1466- 1474.
Rose‚ J., Candy, I., Moorlock, B. S. P., Wilkins, H., Lee, J. A., Hamblin, R. J. O., Lee, J. R., Riding, J. B. and Morigi, A. N., 2002- Early  and  early  middle  Pleistocene  river‚ Coastal  and  neotectonic  processes southeast Norfolk‚ England‚ Proceedings  of  the  Geologists‚ Association  V. 113‚ No. 1‚ pp. 47- 68.
Sharma‚ A. and Rajamani‚ V., 2000- Weathering of gneissic rocks in the upper reaches of Cauvery river‚ South India: implication to  neotectonics  of the  region‚ Chemical  Geology‚ V. 166‚ No. 3-4‚ pp. 203- 223.
Silva, P. G., Goy, J. L., Zazo, C. and Bardajm, T., 2003- Fault generated mountain fronts in Southeast Spain, geomorphologic assessment of tectonic and earthquake activity, Geomorphology, V. 250, pp. 203- 226.
Srivastava‚ P. and Misva, D. K., 2008- Morpho-sedimentary records of active tectonics at the  Kameng  river  exit ‚NE  Himalaya. Geomorphology‚ V. 96‚ No. 1- 2‚ pp. 187- 198.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F.  and Chéry, J., 2004- Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International 157, 381-398.
Zamolyi, A., Szekely, B., Draganits, E. and Timar, G., 2009- Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain, Geomorphology, V. 122 , No.3- 4,  pp. 231- 243.