Document Type : Original Research Paper


1 Geology Department, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

2 Laboratoire G-Time, Université libre de Bruxelles, Brussels, Belgium


Damavand is a young volcanic edifice with an elevation of 5610 meters formed in the middle of the central Alborz Mountain range (N Iran) during the Quaternary. Its edifice is composed of trachyte and trachyandesite rocks, pyroclastic fall and flow deposits and lahars, formed during several eruptions and under different magmatic conditions. To investigate the crystallization trends in the Damavand magma chamber and its evolution over time, plagioclase internal textures in lava flows, pyroclastic flow and ash deposits were studied. Samples from six different lava flows and pyroclastic fall and density current deposits with different ages were collected. Plagioclase crystals with similar dimensions and sizes but with completely different textures, and plagioclases with different dimensions but similar textural characteristics were observed. Twenty-eight different texture types were observed in plagioclase crystals from lava flows, whereas only three texture types were distinguished in the pyroclastic deposits. A large population of plagioclase in pyroclastic deposits reveal the non-equilibrium crstallization in the Damavand magma chamber(s), while in lava flows, a series of plagioclase cumulates present both equilibrium and non-equilibrium crystallization conditions in the magmat chamber. Plagioclase crystals in the source magmas of lava flows have repeatedly remained in a non-equilibrium state without eruption, letting the crystals to overgrow. Changes in the rate of magma ascent, small- and large-scale convection cells in magma chambers, varying temperature and/or pressure, and different volumes of (non-)eruptible mush/melt, are some of the parameters that are revealed by our textural studies. In the period between about 7-450 ky ago, the magma chamber that led to the buildup of the young Damavand volcano, was in non-equilibrium conditions as demonstrated by individual crystals textures and chemistry. However, these conditions have not always led to volcanic eruptions.


Main Subjects

Allenbach, P., 1966. Geologie und petrographie des Damavand und seiner umgeurg (Zentral-Elburz): Iran: Geologisches Institut, ETH-Zurich, Mitteilung Nr. 63, 114 p. DOI: org/10.3929/ethz-a-000089799. 
Anderson, Jr, A.T., 1982. Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. American Mineralogist 69 (7–8), 660–676. American Mineralogist (1984) 69 (7-8): 660–676.
Arzilli, F., Morgavi, D., Petrelli, M., Polacci, M., Burton, M., Di Genova, D., and Perugini, D., 2019. The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): Triggering mechanism implications. Journal of Volcanology and Geothermal Research, 378(April 2015), 35–50. DOI: org/10.1016/j.jvolgeores.2019.04.006.
Bennett, E. N., Lissenberg, C. J., and Cashman, K. V. 2019. The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contributions to Mineralogy and Petrology, 174(6), 1–22. DOI:org/10.1007/s00410-019-1587-1.
Browne, B. L., Eichelberger, J. C., Patino, L. C., and Vogel, T. A., 2006. Magma mingling as indicated by texture and Sr / Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. 154, 103–116. DOI: org/10.1016/j.jvolgeores.2005.09.022.
Campion, R., Mehrabi, B., Shakeri, A., Nekrylov, N., Pokrovsky, B., and Kuznetsova, O., 2020. Jour l P. Journal of Volcanology and Geothermal Research, 106880. DOI: org/10.1016/j.jvolgeores.2020.106880.
Coote, A. C., and Shane, P., 2016. Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions. LITHOS, 260, 107–119 DOI: org/10.1016/j.lithos.2016.05.017.
Davidson, J., Hassanzadeh, J., Berzins, R., Stockli, D.F., Bashukooh, B., Turrin, B., and Pandamouz, A., 2004. The geology of Damavand volcano, Alborz Mountains, northern Iran. Bull. Geol. Soc. Am. 116, 16e29. DOI: org/10.1130/B25344.1.
Davidson, J.P., Tepley, F.J. III, Knesel, K.M., 1998. Isotopic fingerprinting may provide insights into evolution of magmatic systems. EOS Transactions, Amer. Geophys. Union, 79: 185, 189, 193. DOI: 10.1093/petrology/40.5.787.
Dowty, E., 1980. Synneusis reconsidered. Contributions to Mineralogy and Petrology 74, 75e84. DOI: 10.2478/mipo-2018-0009.
Eichelberger, C.J., 1978. Andesitic volcanism and crustal evolution. Nature 275, 21–27. DOI:10.1038/275021a0.
Eskandari, A., Amini, S., De Rosa, R., Donato, P., 2018. Nature of the magma storage system beneath the Damavand volcano (N. Iran): An integrated study. Lithos 300–301.
Eskandari, A., Deevsalar, R., De Rosa, R., Shinjo, R., Donato, P., and Neill, I., 2020. Geochemical and isotopic constraints on the evolution of magma plumbing system at Damavand Volcano, N Iran. Lithos, 354–355. DOI: org/10.1016/j.lithos.2019.105274.
Foley, F. V., Pearson, N. J., Rushmer, T., Turner, S., and Adam, J., 2013. Magmatic evolution and magma mixing of quaternary adakites at solander and little solander islands, new zealand. Journal of Petrology, 54(4), 703–744. DOI:org/10.1093/petrology/egs082.
Giacomoni, P. P., Ferlito, C., Coltorti, M., Bonadiman, C., and Lanzafame, G., 2014.  Earth-Science Reviews Plagioclase as archive of magma ascent dynamics on “open conduit” volcanoes: The 2001 – 2006 eruptive period at Mt. Etna. Earth Science Reviews, 138, 371–393. DOI: org/10.1016/j.earscirev.2014.06.009.
Ginibre, C., and Wörner, G., 2007. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. 98, 118–140. DOI: org/10.1016/j.lithos.2007.03.004.
Ginibre, C., Kronz, A., and Wörner, G., 2002. High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contributions to Mineralogy andPetrology 142, 436e448. DOI: org/10.1007/s004100100298.
Heiken, G.,  and Eichelberger, J.C., 1980. Eruptions at Chaos Crags, Lassen Volcanic National Park, California. J. Volcanol. Geotherm Res. 7, 443–481. DOI:org/10.1016/0377-0273(80)90042-6.
Hibbard, M.J., 1981. The magma mixing origin of mantled feldspars. Contributions toMineralogy and Petrology 76, 158–170. DOI:org/10.1007/BF00371956.
Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology. Developments inPetrology, 13. Elsevier, Amsterdam. DOI: 10.4236/ojms.2016.62017.
Housh, T. B., and Luhr, J. F., 1991. Plagioclase melt equilibria in hydrous systems. American Mineralogist 76, 477,492.
Humphreys, M.C.S., Blundy, J.D., Sparks, S.J., 2006- Magma evolution and open system processes at shiveluch volcano: insights from phenocryst zoning. Journal of Petrology 47 (12), 2303e2334. DOI:10.1093/petrology/egl045.
Izbekov, P.E., Eichelberger, J.C., Patino, L.C., Vogel, B.V., and Ivanov, B. V., 2002. Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: evidence for rapid introduction by basalt replenishment. Geology 30, 799–802. DOI: org/10.1130/0091-7613(2002)030.
Johannes, W., Koepke, J., and Behrens, H., 1994. Partial melting reactions of plagioclase andplagioclase bearing systems. In: Parson, I. (Ed.), Feldspar and Their Reactions. Kluwer, Dordrecht, pp. 161–194. DOI: 10.1007/978-94-011-1106-5-4.
Kuo, H., 1950. Petrology of the Hakone Volcano and the Adjacent Areas, Japan. Bull. Geol. Soc. Am.61, p. 957–1020. DOI:org/10.1130/0016-7606(1950)61.
Kuo, L. C., and Kirkpatrick, R. J., 1982. Pre-eruption history of phyric basalts from DSDP legs 45 and 46: Evidence from morphology and zoning patterns in plagioclase. Contributions to Mineralogy and Petrology, 79(1), 13–27. DOI:org/10.1007/BF00376957.
Kuritani, T., 1999. Phenocryst crystallization during ascent of alkali basalt magma at Rishiri Volcano, northern Japan. Journal of Volcanology and Geothermal Research 88 (77–97). DOI:10.1016/S0377-0273(98)00105-X.
Lofgren, G.E., and Norris, P.N., 1981. Experimental duplication of plagioclase sieve and overgrowth textures. Geol. Soc. Am., Abstr. Lofgren, G.E., 1980. Experimental studies on the dynamic crystallization of silicate melts, Chapter 11. In: Hargraves, R.B. (Ed.), Physics of Magmatic Processes. PrincetonUniversity Press, Princeton, New Jersey. DOI: org/10.1515/9781400854493.487.
Loomis, T. P., and Welber, P. W., 1982. Crystallization processes in theRocky Hill granodiorite pluton, California: An interpretationbased on compositional zoning of plagioclase. Contributions toMineralogy and Petrology 81, 230,239. DOI:10.1007/BF00371300.
Mehdizadeh, H., Liotard, J.-M., and Dautria, J.-M., 2002. Geochemical characteristics of an intracontinental shoshonitic association: the example of the Damavand volcano, Iran. Comptes Rendus Geosci. 334, 111e117. DOI: org/10.1016/S1631-0713(02)01717-0.
Mirnejad, H., Hassanzadeh, J., Cousens, B.L., and Taylor, B.E., 2010. Geochemical evidence for deep mantle melting and lithospheric delamination as the origin of the inland Damavand volcanic rocks of northern Iran. J. Volcanol. Geotherm. Res. 198, 288e296. DOI: 10.1016/j.jvolgeores.2010.09.014.
Mortazavi, S.M. 2017. High Potash Volcanic Rocks and Pyroclastic Deposits of Damavand Volcano, Iran, an Example of Intraplate Volcanism. journal of Sciences, Islamic Republic of Iran 28(2): 155-168. DOI:10.22059/JSCIENCES.2017.60752.
Mortazavi, S.M., Amigo, A., and Sparks, R.S.J. 2009. Evidence for recent large magnitude explosive eruptions at Damavand Volcano, Iran with implications for volcanic hazards. Journal of Sciences, Islamic Republic of Iran, v. 20(3): p.253-264.
Mostafanejad, A., Hossein Shomali, Z.,  and Mottaghi, A.A., 2011. 3-D velocity structure of Damavand789 volcano, Iran, from local earthquake tomography. J. Asian Earth Sci. 790. DOI:org/10.1016/j.jseaes.2011.03.011.
Nakamura, M., and Shimakita, S., 1998. Dissolution origin and syn-entrapment compositionalchanges of melt inclusions in plagioclase. Earth and Planetary Science Letters 161, 119–133. DOI: 10.1016/S0012-821X (98)00144-7.
Nelson, S.T., and Montana, A., 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am. Mineral. 77, 1242–1249. American Mineralogist (1992) 77 (11-12): 1242–1249.
Pearce, T. H., and A. M. Kolisnik., 1990. Observations of plagioclase zoning using interference imaging, Earth Sci. Rev., 29, 9–26,
Pearce, T.H., Russel, J.K., and Wolfson, I., 1987. Laser-interference and Nomarsky interferenceimaging of zoning profiles in plagioclase phenocrysts from the May 18, 1980- eruption of Mount St. Helens, Washington. American Mineralogist 72, 1131–1143, American Mineralogist (1987) 72 (11-12): 1131–1143.
Perugini, D., and Poli, G., 2012. The mixing of magmas in plutonic and volcanicenvironments: analogies and differences. Lithos 153, 261–277. DOI: org/10.1016/j.lithos.2012.02.002.
Renjith, M. L., 2014. Geoscience Frontiers Micro-textures in plagioclase from 1994 e 1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone. Geoscience Frontiers, 5(1), 113–126. DOI: org/10.1016/j.gsf.2013.03.006.
Ruprecht, P., and Wörner, G., 2007. Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. 165, 142–162. DOI: org/10.1016/j.jvolgeores.2007.06.002.
Schwindinger, K.R., 1999. Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. Journal of Volcanology and Geothermal Research 88, 209e238. DOI: 10.1016/S0377-0273(99)00009-8.
Schwindinger, K.R., and Anderson, Jr., A.T., 1989. Synneusis of Kilauea Iki olivines. Contributions to Mineralogy and Petrology 103, 187e198. DOI:org/10.1007/BF00378504.
Shane, P., 2015. Contrasting plagioclase textures and geochemistry in response to magma dynamics in an intra-caldera rhyolite system, Okataina volcano. Journal of Volcanology and Geothermal Research, 297, 1–10. DOI: org/10.1016/j.jvolgeores.2015.03.013.
Shomali, Z. H., and Shirzad, T., 2014. Crustal structure of Damavand volcano, Iran, from ambient noise and799 earthquake tomography. J Seismol: 1-10. DOI: 10.1007/s10950-014-9458-8.
Sigurdsson, H., 1971. Feldspar relations in a composite magma. Lithos 4:231–238. DOI:10.1016/0024-4937(71)90003-x
Singer, B., Dungan, M.A., Layne, G.D., 1995- Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers. AmericanMineralogist 80, 776–798. DOI: org/10.2138/am-1995-7-815.
Smith, R.K., and Lofgren, G.E., 1983. An analytical and experimental study of zoning in plagioclase. Lithos 16, 153–168. DOI:10.1016/0024-4937(83)90012-9.
Sodoudi, F., Yuan, X., Kind, R., Heit, B., and Sadidkhouy, A., 2009. Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies. Geophysical Journal International 177, 733–742 DOI: 10.1111/j.1365-246X.2009.04115.x.
Streck, M.J., 2008. Mineral textures and Zoning as evidence for Open System Processes. 69(1983), 595–622. DOI:org/10.2138/rmg.2008.69.15.
Taghizadeh-Farahmand, F., Afsari, N. and Sodoudi, F., 2015. Crustal Thickness of Iran Inferred from Converted Waves. Pure Appl. Geophys., 172(2), 309-331.
Triebold, S., Kronz, A., and Wörner, G., 2006. Anorthite-calibrated backscattered electron profiles, trace elements, and growth textures in feldspars from the Teide-Pico Viejo volcanic complex (Tenerife). Journal of Volcanology and Geothermal Research, 154(1–2), 117–130. DOI: org/10.1016/j.jvolgeores.2005.09.023.
Tsuchiyama, A., and Takahashi, E., 1983. Melting kinetics of a plagioclase feldspar. Contributions to Mineralogy and Petrology, 84(4), 345–354. DOI: org/10.1007/BF01160286.
Tsuchiyama, A., 1985. Dissolution kinetics of plagioclase in the melt of the system diopside –albite –anorthite, and the origin of dusty plagioclase in andesites. Contributionto Mineralogy and Petrology 89, 1–16. DOI: org/10.1007/BF01177585.
Tsune, A., and Toramaru, A., 2008. Quantitative description of oscillatory zoning in basaltic to dacitic plagioclases from the Shirahama Group, Japan. Earth, Planets and Space, 60(6), 653–660. DOI: org/10.1186/BF03353129.
Ustunisik, G., Kilinc, A., and Nielsen, R. L., 2014. New insights into the processes controlling compositional zoning in plagioclase. Lithos, 200–201(1), 80–93. DOI: org/10.1016/j.lithos.2014.03.021.
Vance, J.A., 1962. zoning in igneous plagioclase: normal and osciallatory zoning. Am J Sci 260:746-760. DOI:org/10.2475/ajs.260.10.746.
Viccaro, M., Barca, D., Bohrson, W. A., Oriano, C. D., Giuffrida, M., Nicotra, E., and Pitcher, B. W., 2016, Lithos Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years. LITHOS, 248–251, 309–323. DOI: org/10.1016/j.lithos.2016.02.004.
Viccaro, M., Giacomoni, P. P., Ferlito, C., and Cristofolini, R., 2010. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116(1–2), 77–91. DOI: org/10.1016/j.lithos.2009.12.012.
Viccaro, M., Giuffrida, M., Nicotra, E., and Ozerov, A. Y., 2012. Magma storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: Inferences on the plumbing system geometry. Lithos, 140–141(January 1991), 11–24. DOI: org/10.1016/j.lithos.2012.01.019.
Yan, L. L., He, Z. Y., and Xu, X. S., 2020. Magma recharge processes of the Yandangshan volcanic-plutonic caldera complex in the coastal SE China: Constraint from inter-grain variation of Sr isotope of plagioclase. Journal of Asian Earth Sciences, 201, 104511. DOI: org/10.1016/j.jseaes.2020.104511.
Zadsaleh, M., and Pourkhorsandi, H., 2016. Quantitative textural investigation of trachy-andesite of Damavand volcano (N Iran): Insights into the magmatic processes, Journal of African Earth Sciences, 120, 238-247. DOI: 10.1016/j.jafrearsci.2016.05.011.
Zelenski, M., Chaplygin, I., Farhadian Babadi, M., Taran, Y., Campion, R., Mehrabi, B., and Kuznetsova, O., 2020. Volcanic gas emissions from Taftan and Damavand, the Iranian volcanoes. Journal of Volcanology and Geothermal Research, 397, 106880. DOI: org/10.1016/j.jvolgeores.2020.106880.