نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه زمین شناسی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

کمربند افیولیتی حاجی‌­آباد-اسفندقه-فاریاب به عنوان یکی از معروف‌­ترین رخدادهای کرومیت­‌دار در جنوب ایران می‌­باشد. کمربند افیولیتی حاجی­‌آباد-اسفندقه-فاریاب در سال‌­های اخیر، کانون توجه بسیاری از زمین‌شناسان علاقمند به کمپلکس‌­های افیولیتی و زمین‌­شناسی اقتصادی بوده است. واحد اولترامافیک گلاشکرد شامل دونیت‌، هارزبورژیت‌های شدیدا سرپانتینیتی شده، لایه‌­های کرومیتیت و ورلیت در کمپلکس افیولیتی فاریاب واقع در جنوب خاور سنندج-سیرجان به عنوان یکی از مناطق کرومیت­‌دار کمربند افیولیتی حاجی‌­آباد-اسفندقه-فاریاب یافت شده ­است. سنگ­‌های اولترامافیک و کرومیتیت­‌های ناحیه گلاشکرد از 20 تا بیش از 50 درصد مدال کرومیت تشکیل شده‌­اند. کرومیت­‌های مطالعه شده دارای بافت­‌های متغیر توده‌­ای، نواری و پراکنده می‌­باشند. زمین‌شیمی سنگ‌­های اولترامافیک گلاشکرد نشان می‌­دهد که میانگین غنی­‌شدگی #Cr کرومیت در سنگ­‌های سرپانتینیت (دونیت و هارزبورژیت) و ورلیت برابر 70-80 =100 *Cr/(Cr + Al)  و در کرومیتیت­‌ها نسبتا بالاتر است [81 = 100*Cr/(Cr + Al)]. بر اساس ویژگی‌های سنگ‌شناسی و شیمی کانی، واحد اولترامافیک گلاشکرد بخش گوشته‌­ای مرتبط با افیولیت می­‌باشد که توسط یک مذاب بونینیتی همگن گسترده در بالای پهنه فرافرورانش (سوپراسابداکشن) تولید شده و کرومیتیت‌های کروم بالا و پریدوتیت­‌های مرتبط را تشکیل داده ­است.

کلیدواژه‌ها

موضوعات

اسدی، س. ع.ا.، قاسمی، ح.، مباشری، م.، 1401، شیمی کانی کروم اسپینل در توده اولترامافیک- مافیک سرگز-آب شور-سیخوران، جنوب خاور ایران: رهیافتی بر محیط زمین‌ساختی تشکیل توده، فصلنامه علمی علوم زمین، زمستان 1401 ، 32(4)، ص 103 تا 118، .doi:10.22071/GSJ.2022.317848.1960
باباخانی، ع. ر. و علوی تهرانی، ن.، سبزه ئی، م.، اهانیان، ت.، واله، ن، 1371، نقشه زمین­‌شناسی سبزواران، مقیاس 250000/1، سازمان زمین­‌شناسی و اکتشافات معدنی کشور. شماره j12.
سبزه‌ئی، م.، ناظم­زاده شعاعی، م.، اشراقی، ص.ع. و روشن روان، ج.، 1373، نقشه زمین­‌شناسی محمدآباد، مقیاس 1:100000، سازمان زمین‌­شناسی و اکتشافات معدنی کشور.
ناصری، ا.، رهگشای، م.، باقری، س. و منصف، ا.، 1402، پترولوژی و شیمی کانی پریدوتیت­‌های کمپلکس افیولیتی فاریاب، منطقه گلاشکرد - جنوب شرق زون سنندج-سیرجان، مجله بلورشناسی و کانی­‌شناسی ایران، 31(2)، تابستان 1402، ص. 361-374، doi:10.61186/ijcm.31.2.361.
References
Ahmadipour, H., Sabzehi, M., Whitechurch, H., Rastad, E., and Emami, M. H., 2003. Soghan complex as an evidence for paleospreading center and mantle diapirism in Sanandaj–Sirjan zone (south-east Iran), Journal of Sciences, Islamic Republic of Iran 14, 157–172. https://www.magiran.com/paper/657477.
Ahmed, A.H., and Arai, S., 2002. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications, Contributions to Mineralogy and Petrology 143, 263–278. https://link.springer.com/article/10.1007/s00410-002-0347-8.
Ahmed, A.H., and Arai, S., 2003. Platinum-group minerals in podiform chromitites of the Oman ophiolite, Can. Mineral. 41, 597–616. https://link.springer.com/article/10.1007/s00710-007-0208-2.
Ahmed, A.H., and Habtoor, A., 2015. Heterogeneously depleted Precambrian lithosphere deduced from mantle peridotites and associated chromitite deposits of Al'Ays ophiolite, Northwestern Arabian Shield, Saudi Arabia. Ore Geol. Rev. 67, 279–296. https://doi.org/10.1016/j.oregeorev.2014.12.018.
Ahmed, A.H., Helmy, H.M., Arai, S., and Yoshikawa, M., 2008. Magmatic unmixing in spinel from late Precambrian concentrically-zoned mafic ultramafic intrusions, Eastern Desert, Egypt. Lithos 104, 85–98. https://doi.org/10.1016/j.lithos.2007.11.009.
Ahmed, A.H., Harbi, H.M., and Habtoor, A.M., 2012. Compositional variations and tectonic settings of podiform chromitites and associated ultramafic rocks of the Neoproterozoic ophiolite at Wadi Al Hwanet, northwestern Saudi Arabia. J. Asian Earth Sci. 56, 118– 134. https://doi.org/10.1016/j.jseaes.2012.05.002.
Arai, S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 113, 191–204. https://doi.org/10.1016/0009-2541(94)90066-3.
Arai, S., 1997. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour. Geol. 47: 177-187. https://doi.org/10.11456/shigenchishitsu1992.47.177.
Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, S., and Ishimaru, S., 2011. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting, Island Arc 20, 125–137. https://doi.org/10.1111/j.1440-1738.2010.00747.
Asadi, S.A.A., Ghasemi, H., Mobasheri, M., 2022. Mineral chemistry of Cr-Spinel in the Sargaz-Abshur ultramafic-mafic intrusion, SE of Iran:  An implication to tectonic setting of the intrusion, Scientific Quarterly Journal of Geosciences, V. 32(4). P.103-118.  https://doi.org/10.22071/gsj.2022.317848.1960. (In Persian).
Babakhani, A.R., Alavi Tehrani, N., Sabzehei, M., Ohanian, T., and Valeh, N., 1992. Sabzevaran geological map, scale 1/250000, geological survey and mineral exploration of Iran, No. j12. (In Persian).
Barnes, S.J., and Röeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks, J. Petrol. 42, 2279–2302. https://doi.org/10.1093/petrology/42.12.2279.
Bonavia, F.F., Diella, V., and Ferrario, A., 1993. Precambrian podiform chromitites from Kenticha hill, southern Ethiopia, Econ, Geol, 88, 198–202. https://doi.org/10.2113/gsecongeo.88.1.198.
Chanideh, F., Ghadami, Gh.R., and Mortazavi, M., 2018. Chemical mineral and petrogenesis Sorkh band Ultramafics of Kahnuj-Roudan Ophiolite belt (Nazdasht area), example of refectory residual alpine peridotite, Iranian Journal of Crystallography and Mineralogy, V. 26, No, 3. https://www.sid.ir/paper/388089/en.
Coleman, R.G., 1977. Ophiolites: ancient oceanic lithosphere. Springer-Verlag, New York, pp. 229. http://dx.doi.org/10.1007/978-3-642-66673-5.
Dare, S.A.S., Pearce, J.A., McDonald, I., and Styles, M.T., 2009. Tectonic discrimination of peridotites using fO2–Cr and Ga–Ti–Fe3+ systematic in chrome spinel. Chem. Geol. 261, 199–216. https://doi.org/10.1016/j.chemgeo.2008.08.002.
Delavari, M., Dolati, A., Marroni, M., Pandolfi, L., and Saccani, E., 2016. Association of MORB and SSZ ophiolites along the shear zone between Coloured Mélange and Bajgan Complexes (North Makran, Iran): evidence from the Sorkhband area. Ofioliti 41, 21 34, https://dx.doi.org/10.4454/ofioliti.v41i1.440.
Dick, H.J.B., and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86, 54–76. https://link.springer.com/article/10.1007/BF00373711.
Falloon, T.J., and Danyushevsky, L.V., 2000. Melting of refractory mantle at 1.5, 2, and 2.5 GPa under anhydrous and H2O-undersaturated conditions: Implications for the petrogenesis of high Ca boninites and the influence of subduction components on mantle melting. J. Petrol. 41, 257–283. https://doi.org/10.1093/petrology/41.2.257.
Ghasemi, H., Juteau, T., Bellon, H., Sabzehi, M., Whitechurch, H., and Ricou, L.E., 2002. The mafic-ultramafic complex of Sikhoran (central Iran): a polygenetic ophiolite complex. C. R. Geoscience 334, 431–438. https://doi.org/10.1016/S1631-0713(02)01770-4.
Greenbaum, D., 1977. The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Economic Geology and the Bulletin of the Society of Economic Geologists”, Nature, 72, 1175-1194. https://doi.org/10.2113/gsecongeo.72.7.1175.
Hassanzadeh, J., and Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an arc type for passive margin-arc transitions: Tectonics, v. 35, no. 3, p. 586–621. doi:10.1002/2015TC003926.
Helmy, H.M., El Mahallawi, M.M., 2003. Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt: A late Precambrian analogue of Alaskan-type complexes. Mineral. Petrol.77, 85e108. https://doi.org/10.1007/s00710-001-0185-9.
Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator: Part 2, Petrologic applications. Can. J. Earth Sci. 4, 71–103. https://doi.org/10.1139/e67-004.
Ishii, T., Robinson, P.T., Maekawa, H., and Fiske, R., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Fryer, P., Pearce, J.A., Stokking, L.B., et al. (Eds.), Proc O.D.P. Sci. Res. 125, pp. 445– 486. https://cir.nii.ac.jp/crid/1573950400241494144.
Ismail, S.K., Arai, S., Ahmed, A.H., and Shimizu, Y., 2009. Chromitite and peridotite from Rayat, northeastern Iraq, as fragments of a Tethyan ophiolite. J. of Island Arc 18, 175– 183. https://doi.org/10.1111/j.1440-1738.2008.00647.
Jannessary, M-R., Melcher, F., Lodziak, J., and Meisel, TH-C., 2012. Review of platinum group element distribution and mineralogy in Chromitite ores from southern Iran, Ore Geology, Reviews, 48, P. 278–305. https://doi.org/10.1016/j.oregeorev.2012.05.001.
Kamenetsky, V., Crawford, A.J., and Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 42, 655–671. https://doi.org/10.1093/petrology/42.4.655.
Le Mee, L., Girardeau, J., and Monnier, C., 2004. Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge. Nature 432, 167–172. https://doi.org/10.1038/nature03075.
Liipo, J., Vuollo, J., Nykänen, V., Piirainen, T., Pekkarinen, L., and Tuokko, I., 1995. Chromites from the Early Proterozoic Outokumpu–Jormua ophiolite belt: a comparison with chromites from Mesozoic ophiolites. Lithos 36, 15–27. https://doi.org/10.1016/0024-4937(95)00002-W.
McCall, G. J. H., 2002. A summary of the geology of the Iranian Makran, Geol. Soc. Sp. Pub., 195, 147–204.
McCall, G., 1985. Explanatory text of the Tahruie quadrangle Map: 1: 250,000, No. J14: Geological Survey of Iran, Tehran.
Miura, M., Arai, S., Ahmed, A.H., Mizukami, T., Okuno, M., and Yamamoto, S., 2012. Podiform chromitite classification revisited: A comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. J. Asian Earth Sci. 59, 52–61. https://doi.org/10.1016/j.jseaes.2012.05.008.
Morgan, K.H., Huber, H., McCall, G.J.H., Peterson, L.W., Child, R., Jones, D.R., Simonian, K., and Samimi-Namin, M., 1979. Geological map of Kahnuj, Scale 1:100000, Geological Survey and Mineral Exploration of Iran.
Morgan, K.H., Huber, H., McCall, G.J.H., Samimi-Namin, M., 1980. Geological map of Now-Dez, Scale 1:100000, Geological Survey and Mineral Exploration of Iran.
Parkinson, I.J., and Pearce, J.A., 1998. Peridotites of the Izu-Bonin-Mariana forearc (ODP Leg 125) evidence for mantle melting andmelt–mantle interactions in a suprasubduction zone setting. J. Petrol. 39, 1577–1618. https://doi.org/10.1093/petroj/39.9.1577.
Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., and Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc basin system, south Atlantic. Contrib. Mineral. Petrol. 139, 36–53. https://doi.org/10.1007/s004100050572.
Peighambari. S., Ahmadipour, H., Stosch, H.G., Daliran, F., 2011. Evidence for multi-stage mantle metasomatism at the Dehsheikh peridotite mass if and chromite deposits of the Orzuieh coloured mélange belt, southeastern Iran”, ore geology reviews 39, 245- 264. https://doi.org/10.1016/j.oregeorev.2011.03.004.
Poosti, M., Ghadami, G.H., and Salehi S., 2017. Mineralogy and Petrogenesis of chromian – spinel in Rudan ultramafic body, Hormozgan Province, Iranian Journal of Crystallography and Mineralogy, Vol. 25, No. 1, 149- 166.
Roberts, S., and Neary, C., 1993. Petrogenesis of ophiolitic chromitite. In: Prichard, H.M., Alabaster, T., Harris, N.B.W. and Neary, C.R. (Eds.), Magmatic Processes and Plate Tectonics, Geol. Soc. Spec. Publ.76, 257-272. https://doi.org/10.1144/GSL.SP.1993.076.01.
Roeder, P.L., 1994. Chromite from the Fiery rain of chondrules to the Kilauea iki lava lake. Can. Mineral. 32: 729-746. https://rruff-2.geo.arizona.edu/uploads/CM32_729.
Rollinson, H., 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: Inferred parental melt compositions. Contrib. Mineral. Petrol. 156, 273– 288. https://doi.org/10.1007/s00410-008-0284-2.
Sabzehei, M., Nazemzadeh Shoaei, M., Eshraghi, S.A., and Roshan Ravan, J., 1994. Mohammad Abad map, 1: 100,000. Geological Survey of Iran. (In Persian).
Saccani, E., Delavari, M., Dolati, A., Marroni, M., Pandolfi, L., Chiari, M., and Barbero E., 2018. New insights into the geodynamics of Neo-Tethys in the Makran area: Evidence from age and petrology of ophiolites from the Coloured Mélange Complex (SE Iran). Gondwana Research 62, 306-327. https://doi.org/10.1016/j.gr.2017.07.013.
Shafaii-Moghadam, H., Mosaddegh, H., Santosh, M., 2013. Geochemistry and petrogenesis of the Late Cretaceous Haji-Abad ophiolite (Outer Zagros Ophiolite Belt, Iran): Implications for geodynamics of the Bitlis–Zagros suture zone, Geological Journal geol. J. 48, 579–602.  https://doi.org/10.1002/gj.2458.
Van der Laan, S.R., Arculus, R.J., Pearce, J.A., and Murton, J.B., 1992. Petrography, mineral chemistry, and phase relations of the basement boninite series of Site 786, Izu– Bonin forearc. In: Fryer, P., Pearce, J.A., Stokking, L.B. (Eds.), Proceedings of the Ocean 39 Drilling Program, Scientific Results, vol. 125. Ocean Drilling Program, College station, TX, pp. 171–202. https://www.researchgate.net/profile/Julian-Pearce/publication/262104091.
Van der Veen, A.H., and Maaskant, P., 1995. Chromian spinel mineralogy of the Staré Ransko gabbro-peridotite, Czech Republic, and its implications for sulfide mineralization. Miner. Deposita. 30, 397–407. https://doi.org/10.1007/BF00202282.
Zhou, M. F., Sun, M., Keays, R.R., and Kerrich, R.W., 1998. Controls on PGE distributions of podiform chromitites: A case study of high- Cr and high- Al chromitites from Chinese orogenic belts, Geochimica et Cosmochimica Acta, Acta 62, 677-688. https://doi.org/10.1016/S0016-7037(97)00382-7.