نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

2 دانشیار، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

3 استادیار، دانشکده علوم ، دانشگاه بیرجند، بیرجند، ایران

4 استادیار، دانشکده علوم پایه، دانشگاه زنجان، زنجان، ایران

چکیده

کانسار روی- سرب دره­زنجیر با سنگ میزبان آهک دولومیتی شده در جنوب شهر تفت جای گرفته است. کانی­های سولفیدی در این کانسار شامل اسفالریت، گالن، پیریت و کالکوپیریت است که به‌صورت جانشینی، پرکننده ­فضای­ خالی، رگه- رگچه­ای، برشی و توده­ای درون سنگ میزبان دیده می‌شود. کانه­زایی در امتداد گسل­های عادی پس از فاز فشارشی تشکیل شده است. کانی­های باطله بیشتر از نوع دولومیت بوده و دولومیتی شدن از فرایندهای اصلی همراه با کانه­زایی سولفیدی در کانسار دره­زنجیر است. سه نوع دولومیت در منطقه معدنی دره­زنجیر تشخیص داده شده است: 1) دولومیت­های ناحیه­ای، که در طی فرایند دیاژنز آهک­های میکریتی سازند تفت تشکیل شده­اند و به‌صورت ناحیه­ای در کل منطقه دیده می­شوند. این دولومیت­ها ریزبلور و دارای رنگ خاکستری تیره هستند؛ 2) دولومیت­های راندگی، که در طی رخداد رانده­شدگی دولومیت­های تفت روی سازند دره­زنجیر و در طی این فشارش در مجاورت گسل راندگی تشکیل شده­اند؛ 3) بیشترین شدت دولومیتی شدن و کانه­زایی سولفیدی، در مجاورت گسل­های عادی رخ داده است. به‌طوری که این دولومیت­ها در ارتباط با کانه­زایی و به دولومیت­های گرمابی (DH) معروف هستند؛ با دور شدن از محل کانه­زایی سولفیدی از شدت مقدار دولومیت­های گرمابی (DH) کاسته می­شود. مطالعات ژئوشیمیایی گویای آن است که مقدار کادمیم کانی­های اسفالریت بالاست و این نشان­ از پایین بودن دمای سیال تشکیل‌دهنده کانه­زایی دارد. تأثیر آب‌های جوی و رخداد فرایند اکسایش موجب اکسید ­شدن کانه­های سولفیدی اولیه به کانی­های غیر­سولفیدی شده است. مهم­ترین کانی­های غیر­سولفیدی کانسار دره­زنجیر شامل اسمیت­زونیت، همی­مورفیت، هیدروزنگسیت و اکسید و هیدروکسیدهای آهن است. با توجه به ویژگی‌های بنیادین کانه‌زایی کانسار دره­زنجیر، از جمله محیط زمین­شناسی، کانه­زایی در امتداد گسل­های عادی پس از فاز فشارش، سنگ دربرگیرنده، کانی‌شناسی و ساخت و بافت آن و مقایسه این ویژگی­ها با ویژگی‌های بنیادین ذخایر سرب و روی با میزبان رسوبی، می‌توان کانسار سرب و روی دره­زنجیر را در رده کانسارهای نوع دره می­سی­سی­پی یا MVT قرار داد.
 

کلیدواژه‌ها

موضوعات

آقانباتی، ع.، 1383- زمین‌شناسی ایران، وزارت صنایع و معادن، سازمان زمین‌شناسی و اکتشافات مواد معدنی کشور، 586ص.
بویری، م.، راستاد، ا.، محجل، م.، ناکینی، ع.، حق‌دوست، م.، 1394- ساخت و یافت، کانی شناسی و چگونگی تشکیل رخساره های سولفیدی در کانسار روی- سرب- (نقره) تپه‎‌سرخ با سنگ میزبان آورای- کربناتی، جنوب اصفهان، فصلنامه علوم زمین، سال بیست و پنجم، شماره 97، صص. 221 تا 236.
پرتوآذر، ح. و ابوتراب، ف.، 1360- چینه شناسی مزوزوییک در ناحیه تفت (ایران مرکزی)، سازمان زمین شناسی و اکتشافات معدنی کشور، نشریه داخلی، 30 ص.
تراز، ح. و آقانباتی، ع.، 1362- نقشه زمین شناسی 1:250000 آباد، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
ساجدیان، ا.، 1390- بررسی زمین شیمیایی، کانی‌شناسی و منشأ کانسار سرب و روی دره زنجیر یزد، پایان‎نامه کارشناسی ارشد، دانشگاه شیراز.
شیبی، م. و اسماعیلی، د.، 1388- پتروژنز گرانیتوییدهای پرآلومین شیرکوه (جنوب غرب یزد)، مجله علوم دانشگاه تهران، جلد سی و پنجم، شماره 3.
قاسمی، م.، 1385- نحوه تشکیل کانسار روی-  سرب مهدی آباد یزد و مقایسه آن با سایر کانسارهای کرتاسه اطراف مهدی آباد، پایان‌نامه کارشناسی ارشد، پژوهشکده علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
ناکینی، ع.، محجل، م. و تدین، م.، 1392- ساختار راندگی در معدن دره‎زنجیر (جنوب باختر یزد)، سی و دومین گردهمایی و نخستین کنگره بین‌المللی تخصصی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور.
نبوی، م. ح.، 1349- نقشه زمین‌شناسی 1:250000 یزد، سازمان زمین‌شناسی و اکتشافات معدنی ایران.
نبوی، م. ح.، 1350- دیباچه‌ای بر زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی ایران.
 
References
Agard, A., Omrani, J., Jolivet, L. and Mouthereau, F., 2005- Convergence history across Zagros (Iran): constrains from collisional and earlier deformation. Int. J. Earth Sci. 94, 401–419.
Alavi, M., 1991- Tectonic map of the Middle East: Tehran. Geological Survey of Iran, scale 1:5,000,000.
Ashton, J. H., Blakeman, R. J., Geraghty, J. E., Beach, A. Coller, D., Philcox, M. E., Boyce, A. J. and Wilkinson, J. J, 2015- The giant Navan carbonate-hosted Zn-Pb deposit-A Review; Irish association for economic geology, Geological Survey of Irland.
Barton, P. B. and Toulmin, P., 1966- Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61(5), p. 815-849
Berberian, F., Muir, I. D., Pankhurst, R. J. and Berberian, M., 1982- Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J. Geol. Soc. London 139, 605–614.
Berberian, M. and King, G. C. P., 1981- Towards a palaeogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18, 210–265.
Bertorino, G., Caredda, A. M. and Zuddas, P., 1995- Weathering of Pb-Zn mine tailings in pH buffered environment. Water Rock Interaction. Proceedings of the 8th International Symposium on Water-Rock Interaction, 1995, p. 859-862
Bradlley, D. C., and Leach, D. L., 2003- Tectonic controls of Mississippi Valley-type lead–zinc mineralization in orogenic forelands; Mineralium Deposita 38: 652–667
Brugger, J., McPhail, D. C., Wallace, M. and Waters, J. 2003- Formation of Willemite in Hydrothermal Environments. Economic Geology; June 2003; v. 98; no. 4; p. 797-818
Chiu, H., Chung, S., Zarrinkoub, M. H., Mohammadi, S., Khatib, M. and Lizuka, Y., 2013- Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny, Lithos 162–163 70–87.
Christopher, P. R., and Wallace, M. W., 2004- Zn-Pb mineralization in the Silvermines district, Ireland: a product of burial diagenesis, Mineralium Deposita vol 39, 87–102.
Craig, J. R. and Scott, S. D., 1974- Sulfide phase equilibria. In P.H. Ribbe, Ed., Sulfide Mineralogy, v. 1, cs1–cs104. Reviews in Mineralogy, Mineralogical Society of America, Washington, D.C.
Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier, C., Pechersky, D. H., Boulin, J., Sibuet, J. C., Savostin, L. A., Sorokhtin, O., Westphal, M., Bazhenov, M. L., Lauer, J. P. and Biju-Duval, B., 1986- Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123, 241–315.
Forster, H., 1978- Mesozoic-Cenozoic metallogenesis in Iran, Journal of Geological Society of London 135 443- 455.
Fürsich, F. T., Wilmsen, M., Seyed-Emami, K. and Majidifard, M. R., 2009- Lithostratigraphy of the Upper Triassic-Middle Jurassic Shemshak Group of northern Iran. In: Brunet, M.-F., Wilmsen, M., Granath, J. (Eds.), South Caspian to Central Iran Basins, vol. 312. Geological Society London, Special Publication, pp. 129–160.
Gagnevin, D., Menuge, F. J., Kronz, A., Barrie, C. and Boyce, A. J., 2014- Minor elements in layered sphalerite as a record of fluid origin, mixing, and crystallization in the Navan Zn-Pb ore deposit, Ireland, Economic Geology, v. 109, pp. 1513–1528.
Goodfellow, W. D. and Lydon, J. W., 2005- Synthesis of SEDEX  Deposits, Geological Survey of Canada, Open File xxx.
Goodfellow, W. D., 2004- Geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn basin, Canada, in Deb, M., Goodfellow, W. D., (eds.), Sediment hosted lead-zinc sulphide deposits: Attributes and models of some major deposits of India, Australia and Canada. Delhi, India, Narosa Publishing House, p. 24–99.
Grandia, F., Cardellach, E., Canals, A. and Banks, D. A., 2003- Geochemistry of the fluids related to epigenetic carbonate-hosted Zn-Pb deposits in the Maestrat basin, eastern Spain: fluid inclusion and isotope (Cl, C, O, S, Sr) evidence; Economic Geology vol. 98, pp. 933–954.
Harms, U. and Heckmann, H., 2004, Niederberg area along the northwestern margin of the trans-Rhenish Slate mountains: Developmental conditions and formation based on sphalerite chemistry, fluid inclusion analyses and sulfur isotope geochemistry: Neues Jahrbuch Fur Mineralogie-Abhandlungen, v. 180, p. 287–327.
Kelley, K. D., Dumoulin, J. A. and Jennings, S., 2004- The Anarraaq Zn-Pb-Ag and barite deposit, northern Alaska: evidence for replacement of carbonate by barite and sulfides; Economic Geology vol. 99, pp. 1577–1591.
Lapakko, K., 2002- Metal Mine Rock and Waste Characterization Tools: An Overview, International Institute for Environment and Development.
Large, R. R., Bull, S. W., Yang, J., Cooke, D. R., Garven, G., McGoldrick, P. J. and Selley, D., 2002- Controls on the formation of giant stratiform sediment-hosted Zn-Pb-Ag deposits with particular reference to the north Australian Proterozoic. University of Tasmania, Centre for Special Ore Deposit and Exploration (CODES) Studies Publication 4, p. 107−149
Large, R. R., McGoldrick, P., Bull, S. and Cooke, D., 2004- Proterozoic startiform  sediment-hosted zinc-lead-silver deposits of northern Australia, in Deb, M. Goodfellow, W.D., (eds.), Sediment-hosted lead-zinc sulphide deposits: Attributes and models of some major deposits of India, Australia and Canada. Narosa publishing house, Delhi, India, p. 1-24.
Leach, D. L., Bradley, D. C., Huston, D., Pisarevsky, S. A., Taylor, R. D. and Gardoll, S. J., 2010a- Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, v. 105, p. 593–625.
Leach, D. L., Marsh, E., Emsbo, P., Rombach, C. S., Kelley, K. D. and Anthony, M., 2004- Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks range, Alaska; Economic Geology vol. 99, pp. 1449–1480
Leach, D. L., Sangster, D. F., Kelley, K. D., Large, R. R., Garven, G., Allen, C. R., Gutzmer, J. and and Walters, S., 2005- Sedimenthosted lead-zinc deposits: A global perspective: Economic Geology, 100th Anniversary Volume, p. 561–607.
Leach, D. L., Taylor, R. D., Fey, D. L., Diehl, S. F. and Saltus, R. W., 2010b- A deposit model for Mississippi Valley-type lead-zinc ores. Chapter A of mineral deposit models for resource assessment: USGS, Scientific Investigations Report 5070–A.
Lee, M. J. and Wilkinson, J. J., 2002- Cementation, hydrothermal alteration, and Zn-Pb mineralization of carbonate breccia’s in the Irish midlands: textural evidence from the Cooleen zone, near Silvermines, county Tipperary, Economic Geology Vol. 97, 2002, pp. 653–662.
Liaghat, S., Moore, F.  and Jami, M., 2000- The Kouh Sourmeh mineralization, a carbonate–hosted Zn–Pb deposit in the Simply Folded Belt of the Zagros Mountains, SW Iran. Mineralium Deposita, v. 35, p. 72–78.
Maghfouri, S., Hosseinzadeh, M. R., Rajabi, A., Azim Zadeh, A. M. and Choulet, F., 2015- Geology and origin of mineralization in the Mehdiabad Zn-Pb-Ba (Cu) deposit, Yazd block, central Iran, 13th SGA, Nancy, France .
Marie, J. St., Kesler, S. E and Allen, C. A., 2001- Origin of iron-rich Mississippi Valley-type deposit. Geology, 29, p. 59-62.
Mattei, M., Cifelli, F., Muttoni, G., Zanchi, A., Berra, F., Mossavvari, F. and Eshraghi, S. A., 2012- Neogene block rotation in central Iran: evidence from paleomagnetic data. Geol. Soc. Am. Bull. 124, 943–956.
McLimans, R. K., Barnes, H. L. and Ohmoto, H., 1980- Sphalerite stratigraphy of the upper Mississippi Valley zinc-lead district, southwest Wisconsin: Economic Geology, v. 75, p. 351–361.
Momenzadeh, M., 1976- Stratabound lead–zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis [Unpublished Ph.D. thesis], Heidelberg, University of Heidelberg, 300 p
Palmer, A. N. and Palmer, M. V., 2000- Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico and West Texas: Journal of Cave and Karst Studies, v. 62, no. 2, p. 91-108.
Pfaff, K., Hildebrandt, H. L. and Leach, D. L., Jacob, E. D. and Markl, G., 2010- Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany; Miner Deposita  45:647–666.
Rddad, L. and Bouhlel, S., 2016- The Bou Dahar Jurassic carbonate-hosted Pb–Zn–Ba deposits (Oriental High Atlas, Morocco): Fluid-inclusion and C–O–S–Pb isotope studies; Ore Geology Reviews 72 1072–1087.
Rajabi, A., Rastad, E. and Canet, C., 2012a- Metallogeny of Cretaceous carbonate hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration, International Geology Review, v. 54:14, p. 1649-1672.
Rajabi, A., Rastad, E., Alfonso, P. and Canet, C., 2012b- Geology, ore facies and sulphur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam Block, Central Iran. International Geology Review, v. 54:14, p. 1635-1648.
Rajabi, A., Rastad, E., Canet, C. and Alfonso, P., 2012c- The Chahmir sediment hosted Zn-Pb deposit, Central Iran: An example of vent-proximal SEDEX mineralization. Mineralium Deposita (submitted).
Reichert, J. and Borg, G., 2002- Lithological and structural controls on non-sulfide zinc ores at Kuhe- Surmeh, Zagros Fold Belt, SW Iran. Denver Annual Meeting (October 27-30, 2002) GSAConference 2002, poster presentation.
Reichert, J. and Borg, G., 2008- Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits, Ore Geology Reviews 33, 134–151
Reichert, J., 2007- A metallogenetic model for carbonate hosted non-sulfide zinc deposits based on observations of Mehdi Abad and Iran Kouh, central and southwestern Iran. [Unpublished Ph.D. thesis], Shillong, University of Martin Luther, 129 p.
Ritchie, A. I. M., 1994- The Waste-rock Environment, in: Environmental Geochemistry of Sulfide Mine-Wastes, Mineralogical Association of Canada Short Course Handbook (J.L. Jambor and D.W. Blowes, eds.), v. 22, p. 133-161.
Robb, R., 2005- Introduction to ore-forming processes, Book, Blackwell Science Ltd a Blackwell Publishing company.
Rosetti, F., Nasrabady, M., Vignaroli, G., Theye, T., Gerdes, A., Razavi, M. H. and Vaziri, M., 2010- Early Cretaceous migmatitic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova 22, 26–34.
Sangster, D. F. and Vaillancourt, P. D., 1990- Geology of the Yava sandstone lead deposit, Cape Breton Island, Nova Scotia; Geological Survey of Canada, Paper 90-8, v. 1, p. 203–244.
Schlagintweit, F. and Wilmsen, M., 2014- Orbitolinid biostratigraphy of the top Taft Formation (Lower Cretaceous of the Yazd Block, Central Iran), Cretaceous Research 49, pp: 125-133
Schlagintweit, F., Bucur, I., Rashidi, K. and Hanifzadeh, R., 2013- Torremiroella hispanica Brun and Canérot, 1979 (benthic foraminifera )from the Lower Cretaceous of Central Iran and its palaeobiogeographic significance, Cretaceous Research 46, pp 272-279
Schwartz, M., 2000- Cadmium in Zinc Deposits: Economic Geology of a Polluting Element. Econ. Geol. Review, 42, 2000, p. 445-469
Stampfli, G. M. and Borel, G. D., 2002- A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet. Sci. Lett. 196, 17–33.
Stöcklin, J., 1968- Structural history and tectonics of Iran: A review. Amer Assoc Petrol Geol Bull 52, p. 1229-1258.
Tirrul, R., Bell, I. R., Griffis, R. J. and Camp, V. E., 1983- The Sistan suture zone of eastern Iran. Geol. Soc. Am. Bull. 94, 134–150.
Turner, E., 2011- Structural and stratigraphic controls on carbonate-hosted base metal mineralization in the mesoproterozoic Borden basin (Nanisivik district), Nunavut; Economic Geology, v. 106, pp. 1197–1223.
Wilkinson, J. J., 2003- On diagenesis, dolomitisation and mineralization in the Irish Zn-Pb orefield, Mineralium Deposita, vol; 38, 968–983.
Wilkinson, J. J., 2014- Sediment-Hosted Zinc–Lead Mineralization: Processes and Perspectives, Treatise on Geochemistry 2nd Edition.
Wilmsen, M., Fursich, F. T. and Majidifard, M. R., 2014- An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran, Journal of Asian Earth Sciences.
Wilmsen, M., Fürsich, F. T. and Seyed-Emami, K., 2003- Revised lithostratigraphy of the Middle and Upper Jurassic Magu Group of the northern Tabas Block, eastcentral Iran. Newsl. Stratigr. 39, 143–156.
Wilmsen, M., Fürsich, F. T., Seyed-Emami, K., Majidifard, M. R. and Taheri, J., 2009- The Cimmerian orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova 21, 211–218.
Wilmsen, M., Storm, M., Fürsich, F. T. and Majidifard, M. R., 2013- Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran). Acta Geol. Pol. 63, 489–513.
Wilmsen, M., Wiese, F., Seyed-Emami, K. and Fürsich, F.T., 2005- First record and significance of Cretaceous (Turonian) ammonites from the Shotori Mountains, east-central Iran. Cretac. Res. 26, 181–195.
Ye, L., Cook, N. J., Ciobanu, C. L., Liu, Y. P., Zhang, Q., Gao, W., Yang, Y. L. and Danyushevsky, L. V., 2011- Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geol. Rev, V. 39, p. 188–217.
Zhou, J., Huang, Z. and Bao, G., 2013- Geological and sulfur–lead–strontium isotopic studies of the Shaojiwan Pb–Zn deposit, southwest China: Implications for the origin of hydrothermal fluids; Journal of Geochemical Exploration 128 pp.51–61.