گابروهای آلکالن شبه جزایر اقیانوسی چشمه قصابان همدان، ژوراسیک میانی: شواهد مدل فرورانش تیغه میان اقیانوسی در حاشیه فعال تتیس جوان، پهنه سنندج- سیرجان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه زمین‌شناسی، دانشکده علوم، دانشگاه لرستان، خرم‎آباد، ایران

2 دانشیار، گروه زمین‌شناسی، دانشکده علوم، دانشگاه لرستان، خرم‎آباد، ایران

3 دانشیار، گروه زمین‌شناسی، دانشکده علوم، دانشگاه شهید چمران، اهواز، ایران

4 استادیار، گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

5 دانشیار، گروه زمین‌شناسی، دانشکده علوم، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

سنگ های دگرگونه پهنه سنندچ-سیرجان (SSZ) در باختر همدان، ناحیه چشمه قصابان تحت نفوذ اولیوین گابروها و گابروهای ژوراسیک میانی قرار گرفته است. این سنگ ها با گرایش آلکالن شامل اولیوین، کلینوپیروکسن، پلاژیوکلاز، فلوگوپیت، آمفیبول قهوه ای، و بیوتیت می باشد که از ذوب بخشی یک منشاء پریدوتیتیدر میدان پایداری گارنت، اشتقاق یافته است. غنی شدگیLREE در الگوی عادی سازی شده عناصر REE نسبت به کندریت و مقادیر بالاینسبت هایLaN/YbN (6.65-11.25)Nb/Yb(22-22.38), و Nb/Y (>1)نشان می دهد که این گابروها از منشاء پلوم های گوشته ای مولد بازالت های با گرایش جزایر اقیانوسی(OIB-like) مشتق شده و در پوسته قاره ای نفوذ کرده است. با توجه به الگوی ژئودینامیک حاکم بر این پهنه در ژوراسیک میانی که به فرورانش پوسته اقیانوس تتیس جوان به زیر حاشیه جنوب باختری سنندج-سیرجان نسبت داده شده است، مدل فرورانش "پشته-گودال" برای اینگابروها پیشنهاد می شود. بر اساس این مدل، فرورانش پشته میان اقیانوسی تتیس جوان به زیر پوسته قاره ای سبب ایجاد پنجره لیتوسفری و نفوذ مذاب های داغ استنوسفری به پهنه سنندج-سیرجان شده است.تشکیل حجم زیاد گرانیتوئیدهای پرآلومینوس نوع Sدر کمپلکس گرانیتوئیدی الوند منطقه همدان می تواند به ذوب متاپلیت ها، در طی فرآیند های فرورانش پشته نسبت داده شود.

کلیدواژه‌ها


عنوان مقاله [English]

OIB-like Alkaline Gabbro of CheshmehGhassaban-Hamedan: Implications of Middle Jurassic Neo-Tethys Ocean Ridge Subduction, Sanandaj-Sirjan Zone

نویسندگان [English]

  • Fahollah Mossavvari 1
  • Reza Zarei Sahamieh 2
  • Adel Saki 3
  • Amirali Tabakh Shabani 4
  • Ahmad Ahmadi-khalaji 5
1 Ph.D. Student, Department of Geology, Faculty of Sciences, Lorestan University, Khoramabad, Iran
2 Associate Professor, Department of Geology, Faculty of Sciences, Lorestan University, Khoramabad, Iran
3 Associate Professor, Department of Geology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
4 Assistant Professor, Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
5 Associate Professor, Department of Geology, Faculty of Sciences, Lorestan University, Khoramabad, Iran
چکیده [English]

The metamamorphic rocks of Sanandaj-Sirjan Zone (SSZ) in the west part of Hamedan at CheshmehGhassaban village were intruded by olivine gabbro- gabbro at the middle Jurassic. The rocks consist of olivine, clinopyroxene, plagioclase, phologopite, brown amphibole and biotite and belong to alkaline series, derived from partial melting in the stability field of a garnet peridotite. Moreover,LREE enrichment in chondrite normalized REE pattern, and relatively high ratios ofLaN/YbN (6.65-11.25)، Nb/Yb(22-22.38),Th/Nb(0.07-0.16) and Nb/Y (>1)indicate that the rocks originatedfrom an ocean island basalt like (OIB-like) sublithospheric mantle source and juxtaposed with and intruded into continental crust. With respect to geodynamic model of SSZ in the Alvand area in the middle Jurassic, ascribed to the subduction of the Neo-Tethys oceanic crust below the SSZ, the "Ridge-Trench" subduction model is proposed for thes egabbros. Based on this model, the subduction of the active spreading center of the Neo-Tethys oceanic crust produceda slab window in the subducted oceanic lithosphere, allowing infiltration of astenospheric hot OIB-like melt into SSZ. In addition, the development of a very substantial volume of S-type granitoid rocks in the Alvand granitoid complex of Hamedan region can be attributed to the melting of the metapilitic rocks due to ridge subduction events

کلیدواژه‌ها [English]

  • OIB-like alkaline gabbro
  • oceanic ridge subduction
  • Sanandaj-Sirjan zone
  • Alvand
  • Hamedan
کتابنگاری

اشراقی، ص. ع.، 1378- بررسی پترولوژی سنگ‎های آذرین و دگرگونی الوند (همدان- تویسرکان)، دانشگاه آزاد اسلامی واحد تهران شمال، دانشکده علوم پایه، پایان نامه کارشناسی ارشد، گرایش پترولوژی.

بهاری‌فر، ع.، 1376- نگرشی نو بر پتروژنز سنگهای دگرگونی ناحیه‌ای منطقه همدان،  وزارت علوم، تحقیقات و فناوری، دانشگاه تربیت معلم تهران، دانشکده علوم، پایان‎‌نامه کارشناسی ارشد.

رشید، ح.، 1388- نقشه زمین شناسی همدان (2)، مقیاس 25000: 1 به انضمام گزارش، سازمان زمین شناسی و اکتشافات معدنی کشور، وزارت صنایع و معادن.

سپاهی گرو، ع. ا.، 1378- پترولوژی مجموعه پلوتونیک الوند با نگرشی ویژه بر گرانیتوییدها، پایان نامه دکترا، گرایش پترولوژی، دانشگاه خوارزمی (تربیت معلم).

عمیدی، م. و مجیدی، ب.، 1356- نقشه زمین‎شناسی 1:250000 همدان، سازمان زمین‏شناسی کشور.

 

References

Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005- Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Science 94: 401-419.

Alavi, M., 1994- Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229: 211-238.

Aliani, F., Maanijou, M., Sabouri, Z. and Sepahi, A. A., 2012- Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran. Chemie der Erde- Geochemistry: 72, 363-383.

Batchelor, R. A. and Bowden, P., 1985- Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48, 43-55. http://dx.doi.org/10.1016/0009-2541(85) 90034-8.

Brown, M., 1998- Ridge- trench interactions and high-T-low-P metamorphism, with particular reference to the Cretaceous evolution of the Japanese Islands. In: Treloar, P. J. and O’Brien, P. J. (eds) What Drives Metamorphism and Metamorphic Reactions? Geological Society, London, Special Publications, 138, 137- 169.

Brown, M., 2010- Paired metamorphic belts revisited, Gondwana Research 18,  46-59.

Cawood, P. A., Kroner, A., Collins, W. J., Kusky, T. M., Mooney, W. D. and Windley, B. F., 2009- Earth Accretionary Systems in Space and Time. From: CAWOOD, P. A. & KRO¨ NER, A. (eds), The Geological Society, London, Special Publications, 318, 1-36.

Chiu, H. Y., Chung, S. L. Zarrinkoub, M. H. Mohammadi, S. S., Khatib, M. M. and Iizuka Y., 2013- Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny, Lithos, 162-163, 70–87.

Condie, K. C., 2005- Earth as an Evolving Planetary System, Elsevier Academic Press, 447p.

Dai, J., Wang, C., Hébert, R., Li, Y., Zhong, H., Guillaume, R., Bezard, R. and Wei, Y., 2011- Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo–Tethys? Gondwana Research: 19, 232- 243.

Delong, S. E., Schwarz, W. M. and Anderson, R. N., 1979- Thermal effects of ridge subduction. Earth Planet. Sci. Lett. 44, 239- 246.

Dickinson, W. R., 2006- Geotectonic evolution of the Great Basin, Geosphere; December 2006; v. 2; no. 7; p. 353-368

Ellam, R. M., 1992- Lithospheric thickness as a control on basalt geochemistry, Geology 1992;20;153-156, doi: 10.1130/0091-7613(1992)0202.3.CO;2

Fergusson, C. L., Nutmana A. P., Mohajjel, M. and Bennett, V. C., 2016- The Sanandaj–Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U-Pb evidence of late Paleozoic rifting of northern Gondwana and mid-Jurassic orogenesis, Gondwana Research 40, 43- 57.

Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S. and Taylor, R. N., 1997- Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett 153:197-208.

Ghalamghash, J., Mirnejad, H. and Rashid, H., 2009- Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj-Sirjan zone, NW Iran: A case study from the Alvand pluton, N. Jb. Miner. Abh., 186, 79–93.

Gill, R., 2010- Igneous Rocks and Processes, A Practical Guide, John Wiley & Sons, 428 p.

Guo, L., Zhang, H. F., Harris, N., Pan, F. B. and Xu, W. Ch., 2013- Late Cretaceous (81Ma) high-temperature metamorphism in the southeastern Lhasa terrane: implication for the Neo-Tethys ocean ridge subduction. Tectonophysics, 608 pp. 112- 126.

Humphreys, E. R. and Niu, Y., 2009- On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism, Lithos 112, 118-136.

Harms, U., Cameron, K. L., Simon, K. and Brarz, H.. 1997- Geochemistry and petrogenesis of metabasitesfrom the KTB ultradeep borehole, Germany. Geol Rundsch, 86, Suppl. :S155- S166.

Ho, K. S., Ge, W. C., Chen, J. C., You, C. F.,Yang, H. J. and Zhang, Y. L., 2013- Late Cenozoic magmatic transitions in the central Great Xing'an Range, Northeast China: Geochemical and isotopic constraints on petrogenesis, Chemical Geology 352, 1-18.

Hudson, T., Plafker, G. and Peterman, Z. E., 1979- Paleogene anatexis along the Gulf ofAlaska margin: Geology, v. 7, p. 573–577.

Kazmin, V. G., Sbortshikov, I. M., Ricou, L. E., Zonenshain, L. P., Boulin, J. and Knipper, A. L., 1986- Volcanic belts as markers of the Mesozoic-Cenozoic active margin of Eurasia, Tectonophysics, 123, 123-152.

Mohajjel, M. and Fergusson, C. L., 2014- Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review 56, 263- 287.

Nakamura, N., 1974- Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and Ordinary Chondrites. Geochimica et Cosmochimica Acta, 38, 757-775.

Ordóñez-Calderón, J. C., Polat, A., Fryer, B. J. and Gagnon, J. E., 2011- Field and geochemical characteristics of Mesoarchean to neoarcheanvolcanic rocks in the Storø greenstone belt, SW Greenland: Evidence for accretion of intra-oceanic volcanic arcs.PrecambrianRes. 184, 24- 42.

Pavlis, T. L. and Sisson, V. B., 1995- Structural history of the Chugach metamorphic complex in the Tana River region, eastern Alaska: a record of Eocene ridge subduction. Geol. Soc. Am. Bull. 107, 1333-1355.

Pearce, J. A., 2008- Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, 100(1), 14–48, doi:10.1016/j.lithos.2007.06.016.

Pearce, J. A. and Norry, M. J., 1979- Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks, Contrib. Mineral. Petrol. 69, 33-47.

Saccani, E., 2014- A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematic, Geoscience Frontiers xxx  1-21.

Saki, A., Mohssen, M. and Baharifar, A. A., 2012- Migmatite microstructures and partial melting of Hamadan metapelitic rocks, Alvand contact aureole, western Iran, International Geology Review Vol. 54, No. 11, August 2012, 1229-1240.

Santosh, M., 2010- A synopsis of recent conceptual models on supercontinent tectonics in relation tomantle dynamics, life evolution and surface environment, Journal of Geodynamics 50, 116-133.

Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A. A., Shang, C. K. and Vousoughi Abedini, M., 2010- Geochemistry and U-Pb zircon geochronology of the Alvand plutonic complex in Sanandaj-Sirjan Zone (Iran): New evidence for Jurassic magmatism. Journal of  Asian Earth Sciences 39: 668-683.

Siivola, J. and Schmid, R., 2007- List of Mineral Abbreviations, Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version.

Sisson, V. B., Pavlis, T. L., Roeske, S. M. and Thorkelson, D. J., 2003- Introduction: An overview of ridge-trench interactions in modern and ancient settings. Geol. Soc. Am. Spec. Pap.371, 1-18.

Stöcklin J., 1968- Structural history and tectonics of Iran: a review.AAPG Bull 52: 1229– 1258

Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A. D., Saunders and M. J., Norry (Eds.): Magmatism in Ocean Basins. Geological Society Special Publication London 313–345.

Thorkelson, D. J., 1996- Subduction of diverging plates and the principles of slab window formation Tectonophysics, Volume 255, Issues 1-2, 20 April 1996, Pages 47-63

Wang, X. C., Wilde, S. A., Xu, B. and Pang, C. J., 2015- Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination, Lithos-03785, 1-41.

Wilson, M., 1989- Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London, p. 466.

Wilson, M., 2007- Igneous Petrogenesis: A Global Tectonic Approach. Springer, p. 466.

Winchester, J. A. and Floyd, P. A., 1977- Geochemical discrimination of different magma serieschemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology. 20, 325-343

Windley, B. F., Alexeiev, D., Xiao, W., Kroner, A. and Badarch, G., 2007- Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164,31-47.

Wood, D. A., 1980- The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the british tertiary volcanic province, Earth and Planetary Science Letters, 50,11-30.

Xia, L. Q., 2014- The geochemical criteria to distinguish continental basalts from arc related ones, Earth-Science Reviews 139 (2014) 195-212.

Zheng, B., Zhu, W., Jahn B. M., Shu, L., Zhang, Z. and Su J., 2010- Subducted Precambrian oceanic crust: geochemical and Sr-Nd isotopic evidence from metabasalts of the Aksu blueschist, NW China, Journal of the Geological Society 2010, v.167; p1161-1170.