شیمی کانی و دما- فشار سنجی بیوتیت‌های توده نفوذی یوسف لو، شمال غرب ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

3 دانشیار، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

توده نفوذی یوسف‌لو در جنوب شرق اهر و شمال شرق استان آذربایجان شرقی قرار گرفته است و بخشی از پهنه ماگمایی اهر- ارسباران است. ترکیب سنگ شناسی این توده شامل کوارتز مونزونیت، گرانودیوریت و گرانیت است ولی سنگ غالب مورد بررسی گرانودیوریت است. مجموعه کانی‌های تشکیل دهنده این توده شامل کوارتز، پلاژیوکلاز، بیوتیت، آمفیبول، آلکالی فلدسپار، کلریت، زیرکن، اسفن، آپاتیت و کانی‌های اوپاک است. بیوتیت به عنوان یکی از شاخص‌ترین کانی‌های فرومنیزین در نمونه‌های مورد بررسی، از لحاظ ترکیبی غنی از Mg و فقیر از Cl است و همگی ماهیت اولیه دارند. دو متغیر مهم در بیوتیت‌ها نسبت Fe/(Fe+Mg) (از 36/0تا 43/0) و Al IV (با میانگین 32/2 apfu) است که بر این اساس، ترکیب میکاهای مورد بررسی در قلمرو بیوتیت و در بین قطب آنیت و سیدروفیلیت قرار می‌گیرد. بررسی شیمی کانی بیوتیت نشان می‌دهد که فشار محاسبه شده بر اساس آلومینیوم کل بیوتیت، برای این توده بین kb19/0 تا kb89/0 در تغییر است که حاکی از تشکیل این کانی در عمق کم است. میانگین دمای تبلور بیوتیت‌ها بر اساس غلظت Ti و نسبتTi/Fe+2، 742 درجه سانتی‌گراد محاسبه شده است. ب

کلیدواژه‌ها


عنوان مقاله [English]

Mineral Chemistry and thermobarometry of biotite in Youseflo pluton,NW Iran

نویسندگان [English]

  • Elahe Namnabat 1
  • Mansour Ghorbani 2
  • Seyed hassan Tabatabaei 3
1 Ph.D. Student, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Associate Professor, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 Associate Professor, Faculty of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

The Youseflo pluton, a part of Ahar - Arasbaran magmatic belt, is located in south east of Ahar city in north east of East Azarbayejan province of Iran. The pluton is mainly composed of quartz monzonite, granodiorite and granite, however, the major investigated rock is granodioritic in composition. Quartz, Plagioclase, biotite, amphibole, K-feldspar, chlorite, zircon, sphene, apatite and opaque minerals are the minerals of these rocks. Biotites, as a significant ferromagnesian mineral in Youseflo pluton, are Mg- rich, Cl-poor where all are primary types. Considering Fe/(Fe+Mg) (from 0.36 to 0.43) and Al IV (average 2.32 apfu), minerals are classified as biotite between Annite- siderophyllit endmembers. The study of mineral chemistry of biotites demonstrates that the calculated pressure based on total Al content in biotites varies from 0.19 to 0.89 kb which is indicative of a shallow emplacement depth. Crystallization temperature of biotites based on Ti content and Ti/Fe+2 ratio suggests an average temperature of 735 oC.

کلیدواژه‌ها [English]

  • Biotite
  • I-type granitoid
  • Yousflo plotun
  • Thermobarometry
  • fugacity
کتابنگاری

جمالی، ح.، یعقوب پور ع.، مهرابی، ب.، 1391-  ارتباط کانی سازی­های مس و طلا با فازهای مختلف ماگمایی در توده­های خانکندی و یوسف لو، شرق اهر، مجله بلور شناسی و کانی شناسی ایران، ص 547-564.

محمدی، ب. و علی اکبری بیاض، ح.، 1391- گزارش نهایی اکتشاف عمومی طلا در محدوده زایلیک- ساریلار، سازمان زمین شناسی کشور 254ص.

مهدوی م.ع.، امینی فضل ع.، 1376، نقشه زمین شناسی 100000/1 اهر، سازمان زمین شناسی کشور.

 

References

Abdel-Rahman, A.F.M., 1994- Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas, Journal of petrology, 35 (2), 525-541.

Aghazadeh, M., Castro, A., Omran, N.R., Emami, M.H., Moinvaziri, H. and Badrzadeh, Z., 2010- The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences, 38 (5), 199-219.

Alavi, M., 2007- Structures of the Zagros fold-thrust belt in Iran. American Journal of science, 307(9), 1064-1095.

Anderson, J.L., Barth, A.P. and Mazdab, J.L.W.F., 2008- Thermometers and thermobarometers in granitic systems, Reviews in Mineralogy and Geochemistry, 69 (1), 121-142.

Anderson, J.L. and Smith, D.R., 1995- The effects of temperature and fO2 on the Al-in-hornblende barometer, American Mineralogist, 80(5-6), 549-559.

Castro, A., Aghazadeh, M., Badrzadeh, Z. and Chichorro, M., 2013- Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos, 180, pp.109-127.

Cunha, I.R.V., Dall'Agnol, R., Feio, G.R.L., 2016- Mineral chemistry and magnetic petrology of the Archean Planalto Suite, carajas Province: Amazonian Craton: implications for the evolution of Ferroan Archean granites. J. S. Am. Earth Sci., 67, 100-121.

Dall'Agnol, R., Teixeira, N.P., Rämö, O.T., Moura, C.A.V., Macambira, M.J.B., Oliveira, D.C., 2005- Petrogenesis of the Paleoproterozoic, rapakivi, A-type granites of the Archean Carajás Metallogenic Province, Brazil, Lithos 80 (1-4), 101-129.

Deer, W.A., Howie, R.A. and Zuss man, J., 1992- An Introduction to the Rock forming Minerals, London (Longman), 696 p.

Dercourt, J.E, Zonenshain, LP, Ricou, LE, Kazmin, V. G., Le Pichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., 1986- Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias, Tectonophysics, 123(1-4): 241-315.

Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010- Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint, International Geology Review, 52(4-6), 536-578.

Douce, A.E.P., 1993- Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability, Chemical Geology, 108 (1-4), 133-162.

Foster, M. D., 1960  -Interpretation of the composition of trioctahedral micas, United States Geological Survey Professional Paper, 354-B, 11-46.

Ghorbani, M., 2013- A summary of geology of Iran, In The Economic Geology of Iran, Springer, Dordrecht, 45-64.

Henry, D.J., Guidotti, C.V. and Thomson, J.A., 2005- The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms, American Mineralogist, 90 (2-3), 316-328.

Hezarkhani, A., 2006- Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran, Journal of Asian Earth Sciences, 27(3), 326-340.

Innocenti, F., Mazzuoli, R., Pasquare, G., Radicati di Brozolo, F. and Villari, L., 1982- Tertiary and quaternary volcanism of the Erzurumkars area (Eastern Turkey): geochronological data and geodynamic evolution, Journal of Volcanology and Geothermal Research, 13, 223-240.

Ishihara, S., 1977- The magnetite-series and ilmenite-series granitic rocks, Mining geology, 27 (145), 293-305.

Ishihara, S., 1971- Major molybdenum deposits and related granitic rocks in Japan, Rep. Geol. Surv. Japan, 239, 1-178.

Jahangiri, A., 2007- Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications, Journal of Asian Earth Sciences, 30 (3), 433-447.

Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A. and Mehrabi, B., 2010- Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran, International Geology Review, 52(4-6), 608-630.

Jiang, Y.H., Jiang, S.Y., Ling, H.F., Zhou, X.R., Rui, X.J. and Yang, W.Z., 2002- Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses, Lithos, 63(3-4), 165-187.

Lalonde, A.E. and Bernard, P., 1993- Composition and color of biotite from granites; two useful properties in characterization of plutonic suites from the Hepburn internal zone of Wopmay Orogen, Northwest Territories, The Canadian Mineralogist, 31(1), 203-217.

Luhr, J.F., Carmichael, I.S. and Varekamp, J.C., 1984- The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydritebearing pumices, Journal of Volcanology and Geothermal Research, 23(1-2), 69-108.

Nachit, H., Ibhi, A., Abia, E.H. and Ben Ohod, M., 2005- Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. – Geoscience, 337(16), 1415-1420.

Shand, S.J., 1949- Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-deposits, Thomas Murby.

Speer, J.A., 1984- Micas in igneous rocks, Reviews in Mineralogy and Geochemistry, 13(1), 299-356.

Sun, W., Arculus, R.J., Kamenetsky, V.S. and Binns, R.A., 2004- Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization, Nature, 431(7011), 975 p.

Uchida E., Endo S., Makino M., 2007- 1985, Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits, Resource Geology, Vol: 57, No. 1: 47–56. https://doi.org/10.1111/j.1751-3928.2006.00004.x

Wones, D.R., 1981- Mafic silicates as indicators of intensive variables in granitic magmas, Mining Geology, 31(168), 191-212.

Wones, D.R. and Eugster, H.P., 1965- Stability of biotite: experiment, theory and application. Am. Mineral. 50, 1228-1272.

Yang, W.J., Wang, L.K., Zhang, S.L. and Xu, W.X., 1986- Micas of the two series of granites in south China. Acta Mineral Sin (in Chinese), 6(4), 298-307.

Zhou, Z. X., 1986- The origin of intrusive mass in Fengshandong, Hubei province, Acta Petrologica Sinica, 1, 007.