منشا، تحولات ماگمایی و خاستگاه زمین ساختی جنوب شرق گرانیتوئید جبال بارز، بم، استان کرمان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، بخش زمین‎شناسی، دانشکده علوم، دانشگاه شهید باهنر، کرمان، ایران

2 استاد، بخش زمین‎شناسی، دانشکده علوم، دانشگاه شهید باهنر، کرمان، ایران

3 دانشیار، بخش زمین‎شناسی، دانشکده علوم، دانشگاه شهید باهنر، کرمان، ایران

چکیده

منطقه مورد مطالعه در جنوبشرقی بم و کمان ماگمایی ارومیه دختر قرار دارد. براساس سنگنگاری و ژئوشیمیایی ترکیب سنگ ها تونالیت، گرانودیوریت، گرانیت و آلکالی گرانیت و دارای ماهیت کالک آلکالن تا پتاسیم بالا و متاآلومین تا پرآلومین ضعیف هستند. رفتار عناصر Ce ، Zr، Ba و Y در برابر SiO2 گرانیت های نوع I دما بالا را نشان میدهد، باتوجه به نمودارهای زمینساختی در محدوده گرانیتهای جزایر کمانی قرار میگیرند. غنی شدگی LILE و LREE و تهیشدگی HFSE در نمونه ها از ویژگیهای حاشیه فعال قارهای میباشد. مقادیر Nb/La وNb/U و نسبت Sm/Yb نشانگر آلایش ماگما با پوسته است. بر اساس نتایج ایزوتوپی و نمودار La در برابر La/Sm ، پوسته زیرین جوان بهمراه پوسته قدیمی قاره ای در تکوین ماگمای منشابارزاست. باتوجه به مجموعه درشت یلورها،الگوی REE ناهنجاری Eu و همچنین مقایسه نسبت La/Yb ، نمونه های مورد بررسی از یک ماگمای به نسبت خشک تفریق یافتهاند. نسبت های Sm/Yb و La/Yb نبود گارنت در منشا را مشخص می کند. ذوب بخشی درجه کم تا متوسط یک منبع مافیک آمفیبولیتی که توسط مواد پوسته و سیالهای حاصل از صفحه فرورونده و مذاب حاصل از رسوبات فرورانش آلایش یافته است، منشایی برای تشکیل توده گرانیتوئیدی مورد مطالعه می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The origin, magma evolution and tectonic setting of southeast of Jebal-E-Barez granitoid, Bam, Kerman province

نویسندگان [English]

  • Shirin Behpour 1
  • Abbas Moradian 2
  • Hamid Ahmadipour 3
1 Ph.D. Student, Department of Geology, Faculty of Science, Shahid Bahonar University, Kerman, Iran
2 Professor, Department of Geology, Faculty of Science, Shahid Bahonar University, Kerman, Iran
3 Associate Professor, Department of Geology, Faculty of Science, Shahid Bahonar University, Kerman, Iran
چکیده [English]

The studied area is located in the SE of Bam and Urumieh-Dokhtar Magmatic Arc. Based on petrographical and geochemical characteristics, studied rocks contain tonalite, granodiorite, granite and alkali granite. These rocks are metaluminous, weakly peraluminous, high-K, and calc-alkaline. The behavior of Y, Ba, Ce and Zr vs. SiO2 display the properties of the high temperature I-type granites. These granitoids plot in the field of VOG. Enriched LREE and LILE with depleted HFSE show characteristics of subduction related active continental margins. The ratios of Nb/U and Nb/La and Sm/Yb indicate the crustal contamination. Isotopic data and La vs. La/Sm diagram show the role of the lower crust and the old continental crust in magma evolution. According to the phenocrysts assemblage, REE pattern with negative Eu anomaly and La/Yb ratio to crustal thickness, studied rocks are fractionated from relatively dry magma which has undergone from shallow depths. Sm/Yb and La/Yb ratio display the mantle source is garnet-free source. The low to moderate degree of partial melting of garnet-free amphibolite is the source of the studied granitoids. Volatiles that is driven from subduction slab and melt of the subducted sediments play a significant role in the generation and evolution of their magma source.

کلیدواژه‌ها [English]

  • Jebal-E-Barez granitoid
  • Calc-alkaline
  • I-type granite
  • magma evolution
  • garnet-free
کتابنگاری

آقانباتی، ع.، 1385- زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی، 587 ص.

رسولی، ج.، قربانی، م. و احدنژاد، و.، 1396- سال­سنجی زیرکن به روش U-Pb و بررسی وجود پی­سنگ قدیمی (پیش از کامبرین پیشین و میانی) در ایران بر پایه زیرکن موروثی بررسی موردی: مجموعه گرانیتوئیدی جبال­بارز، مجله بلورشناسی و کانی­شناسی ایران، شماره دوم، سال بیست و پنجم، 245-258ص.

یزدان­فر، الف.، مسعودی، ف. و قربانی، م.، 1387- توده­های تأخیری در کمپلکس جبال­بارز، فصلنامه تخصصی زمین و منابع، پیش­شماره اول، سال اول، 103- 113ص.

 

References

Alavi, M., 1994- Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics 229(3): 211-238.

Andersen, O., 1928- The genesis of some types of feldspar from granite pegmatites, Norsk Geologisk, Tidsskr, 10.

Augustithis, S. S., 1973- Atlas of the textural patterns of granites, gneisses and associated rock types, Amsterdam: New York: Elsevier Science & Technology, 378 p.

Ayers, J., 1998- Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones, Contributions to Mineralogy and Petrology, 132(4): 390- 404.

Bonin, B., Azzouni-Sekkal, A., Bussy, F. and Ferrag, S., 1998- Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings, Lithos, 45(1): 45-70.

Chappell, B., 1999- Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites, Lithos, 46(3): 535-551.

Chappell, B., Bryant, C., Wyborn, D., White, A. and Williams, I., 1998- High‐and low‐temperature I‐type granites, Resource Geology, 48(4): 225- 235.

Clarke, D., 1992- Granitoid Rocks, London (Chapman Hall), 283 pp.

Condie, K. C., 1989- Geochemical changes in basalts and andesite across the Archean- Proterozoic boundry: identification and significancse. Lithos, 23: 1-18.

De La Roche, H., Leterrier, J. T., Grandclaude, P. and Marchal, M., 1980- A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—its relationships with current nomenclature, Chemical geology, 29(1-4): 183-210.

Dimitrijevic, M., 1973- Geology of Kerman region: institute for geological and mining exploration and investigation of nuclear and other mineral raw material, Beograd—Yugoslavia, Iran Geol, Survey Rept Yu/52.

Douce, A. E. P., 1999- What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?, Geological Society, London, Special Publications, 168(1): 55-75.

Drummond, M. S. and Defant, M. J., 1990- A model for trondhjemite‐tonalite‐dacite genesis and crustal growth via slab melting: Archean to modern comparisons, Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521.

Gaetani, G. A., 2004- The influence of melt structure on trace element partitioning near the peridotite solidus, Contributions to Mineralogy and Petrology, 147(5): 511-527.

Gertisser, R. and Keller, J., 2003- Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis, Journal of Petrology, 44(3): 457-489.

Gill, J. B., 1981- What is “Typical Calcalkaline Andesite”? Orogenic Andesites and Plate Tectonics, Springer, 1-12.

Harris, N., Massey, J. and Inger, S., 1993- The role of fluids in the formation of High Himalayan leucogranites, Geological Society, London, Special Publications, 74(1): 391-400.

Haschke, M. and Gunther, A., 2003- Balancing crustal thickening in arcs by tectonic vs. magmatic means, Geology, 31(11): 933-936.

Hildreth, W. and Moorbath, S., 1988- Crustal contributions to arc magmatism in the Andes of central Chile, Contributions to mineralogy and petrology, 98(4): 455-489.

Ionov, D. A. and Hofmann, A. W., 1995- Nb-Ta-rich mantle amphiboles and micas implications for subduction-related metasomatic trace element fractionations, Earth Planet. Sci. Lett., 131, 341-356.

Jahn, B. M., 2004- The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic, Geological Society, London, Special Publications, 226(1): 73-100.

Kay, S., Mpodozis, M. C., Ramos, V. A. and Munizaga, F., 1991- Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33 S), Geological Society of America Special Paper, 265: 113-137.

KRBrz, R., 1983- Symbols for rock-forming mineralsl, American mineralogist, 68: 277-279.

Le Maitre, R. W. B., Dudek, P., Keller, A., Lameyre, J., Le Bas, J., Sabine, M., Schmid, P., Sorensen, R., Streckeisen, H. and Woolley, A., 1989- A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, International Union of Geological Sciences.

Li, J. X., Qin, K. Zh., Li, G. M., Xiao, B., Chen, L. and Zhao, J. X., 2011- Post-collisional orebearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: Melting of thickened juvenile arc lower crust, Lithos, 126(3-4): 265- 277.

Liu, J., Bohlen, S. and Ernst, W., 1996- Stability of hydrous phases in subducting oceanic crust, Earth and Planetary Science Letters 143(1-4): 161-171.

Loiselle, M., 1979- Characteristics and origin of anorogenic granites, Geol. Soc. Amer. Abst. 11: 468.

Maniar, P. D. and Piccoli, P. M., 1989- Tectonic discrimination of granitoids, Geological society of America bulletin, 101(5): 635-643.

Martin, H., 1987- Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry, Journal of Petrology, 28(5): 921-953

McDonough, W. and Sun, S. S., 1988- A primitive mantle composition from xenoliths, Chemical Geology, 70(1-2): 12.

Pearce, J. A., Harris, N. B. and Tindle, A. G., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, Journal of petrology, 25(4): 956-983.

Pearce, J., 1996- Sources and settings of granitic rocks, Episodes, 19: 120-125.

Peccerillo A. and Taylor S. R., 1976- Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 58: 63-81.

Pitcher, W. S., 1997- The nature and origin of granite, Springer Science & Business Media.

Plank, T., 2005- Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents, Journal of Petrology, 46(5): 921-944.

Richards, J. P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012- High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan, Economic Geology, 107(2): 295-332.

Richards, J. P., Ullrich, T. and Kerrich, R., 2006- The late Miocene–Quaternary Antofalla volcanic complex, southern Puna, NW Argentina: protracted history, diverse petrology, and economic potential, Journal of Volcanology and Geothermal Research, 152(3): 197-239.

Rollinson, H., 1993- Using geochemical data, Longman, London, 352 pp.

Roşu, E., Seghedi, I., Downes, H., Alderton, D. H., Szakács, A., Pécskay, Z., Panaiotu, C., Panaiotu C. E. and Nedelcu, L., 2004- Extension-related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania: origin of magmas, Swiss Bulletin of Mineralogy and Petrology, 84(1): 153-172.

Rudnick, R. and Gao, S., 2003- Composition of the continental crust, Treatise on geochemistry, 3: 659.

Salters, V. J. and Stracke, A., 2004- Composition of the depleted mantle, Geochemistry, Geophysics, Geosystems, 5(5).

Saunders, A. D., Tarney, J. and Weaver, S. D., 1980- Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas, Earth and Planetary Science Letters, 46(3): 344-360.

Sisson, T., Ratajeski, K., Hankins, W. and Glazner, A., 2005- Voluminous granitic magmas from common basaltic sources, Contributions to Mineralogy and Petrology, 148(6): 635-661.

Soesoo, A., 2000- Fractional crystallization of mantle‐derived melts as a mechanism for some I‐type granite petrogenesis: an example from Lachlan Fold Belt, Australia, Journal of the Geological Society, 157(1): 135-149.

Stalder, R., Foley, S. F., Brey, G. P. and Horn, I., 1998- Mineral- aqueous fluid partitioning of trace -Elements at 900-1200 c and 3-5.7 GPA: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism, Geochem. Cosmochem, Acta, 62, 1781- 1801.

Stocklin, J., 1968- Structural history and tectonics of Iran: a review, AAPG Bulletin, 52(7): 1229-1258.

Stolz, A., Jochum, K., Spettel, B. and Hofmann, A, 1996- Fluid-and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variations in island-arc basalts, Geology, 24(7): 587-590.

Sun, S. S. and McDonough, W. S., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society, London, Special Publications, 42(1): 313-345.

Tepper, J. H., Nelson, B. K, Bergantz, G. W. and Irving, A. J., 1993- Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity, Contributions to Mineralogy and Petrology, 113(3): 333-351.

Waight, T. E., Weaver, S. D. and Muir, R. J., 1998- Mid-Cretaceous granitic magmatism during the transition from subduction to extension in southern New Zealand: a chemical and tectonic synthesis, Lithos, 45(1): 469-482.

Wang, K., Plank, T., Walker, J. D. and Smith, E. I., 2002- A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical, Research 107.

Wang, R., Richards, J. P, Hou, Z., Yang, Z. and DuFrane, S. A., 2014- Increased magmatic water content—the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet, Economic Geology, 109(5): 1315-1339.

Wilson, M., 1989- Igneous Petrogenesis: A Global Tectonic Approach, Unwin Hyman, London, 466 pp.