کاربرد ریخت شناسی و توزیع عناصر نگاره گاما در بررسی شرایط محیطی و چینه نگاری سکانسی سازند آسماری، میدان کارون

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

2 استاد، دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

3 دانشیار، دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

4 کارشناسی ارشد، شرکت ملی مناطق نفت خیز جنوب ایران، اهواز، ایران

چکیده

سازند آسماری به سن الیگو- میوسن یکی از مهم‌ترین سنگ‌های مخزن در میدان‌های نفتی فروافتادگی دزفول به‌ شمار می‌آید. این مطالعه به تفسیر محیط رسوبی و چینه‌نگاری سکانسی سازند آسماری در میدان کارون با استفاده از تغییرات ریزرخساره‌ها، تغییر در ریخت‌شناسی نگاره گاما و تغییر در غلظت عناصر توریم، پتاسیم و اورانیوم نگاره طیف‌سنج اشعه گاما پرداخته است. نتایج حاصل از آنالیز ریزرخساره‌ای منجر به شناسایی 1 ریزرخساره تبخیری، 9 ریزرخساره کربناته و 1 ریزرخساره مختلط گردید. از نسبت دو عنصر توریم به اورانیوم جهت بررسی شرایط اکسیدان و احیا استفاده شد. بررسی گسترش زمانی ریزرخساره‌ها در چارچوب چینه نگاری سکانسی منجر به شناسایی سه سکانس رسوبی رده سوم گردید. بررسی تغییرات نگاره در سطوح زمانی بیانگر روندکاهشی نگاره گاما در مرزهای سکانسی و روند افزایشی آن در سطوح حداکثر غرقابی دارد. پنج ریخت‌شناسی جعبه‌ای به سمت چپ، جعبه‌ای به سمت راست، زنگوله‌ای دندانه‌دار، قیفی دندانه‌دار و دندانه‌دار خطی در بخش‌های مختلف توالی مورد مطالعه شناسایی گردید. انطباق این ریخت‌شناسی با یافته‌های چینه‌نگاری سکانسی منجر به ارتباط شکل جعبه‌ای به سمت چپ با دسته رخساره‌های ترازپایین، اشکال زنگوله‌ای دندانه‌دار و جعبه‌ای به سمت راست با دستۀ رخساره تراز پیشرونده و شکل قیفی دندانه‌دار با دسته رخساره ترازبالا شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Morphology and Elemental Distribution of Gamma-Ray Log in Consideration of Environmental Conditions and Sequence Stratigraphy of Asmari Formation, Karun Field

نویسندگان [English]

  • Samira Akbarzadeh 1
  • Abdolhossein Amini 2
  • Vahid Tavakoli 3
  • Khosro Heydari 4
1 M.Sc., School of Geology, College of Science, University of Tehran, Tehran, Iran
2 Professor, School of Geology, College of Science, University of Tehran, Tehran, Iran
3 Associate Professor, School of Geology, College of Science, University of Tehran, Tehran, Iran
4 M.Sc., NISOC, Ahvaz, Iran
چکیده [English]

The Oligo–Miocene Asmari Formation is the most important reservoir rocks of the Dezful embayment oil fields. This study interpret sedimentary environments and sequence stratigraphy of the Asmari Formation in Karun oil field based on changes in facies, gamma-ray log morphology and change in concentration of thorium, potassium and uranium elements of the natural gamma- ray spectrometry. In this regard, 1 evaporate, 9 carbonate facies and 1 mixed facies were recognized. The thorium to uranium ratio used to analyze the oxidation, reduction condition. Based on the vertical distribution of the facies in the sequence stratigraphy framework, three 3rd order sequences were determined. Changing the trend of logs in time reflects the decreasing trend of gamma- ray in the sequence boundary and increasing trend at maximum flooding surface. Five main morphologies including left Box Car shape, Right Box Car shape, Serrated Bell shape, Serrated Funnel shape and serrated shape have been recognized. The conformity of this morphologies with the sequence stratigraphy leads to the relationship between the Left Box Car shape with Low stand system tract, Serrated Bell shape and Right Box Car shape with Transgressive system tract and Serrated Funnel shape with High system tract.

کلیدواژه‌ها [English]

  • Asmari
  • Gamma- ray Log
  • Facies
  • Sequence Stratigraphy
  • Time surface
کتابنگاری

آب منطقه‌ای خراسان رضوی، 1393- گزارش پیشنهاد تمدید ممنوعیت دشت گناباد.

پاپلی یزدی، م.، لباف خانیکی، ر.، لباف خانیکی، م.، جلالی، ع. و وثوقی، ف.، 1379- قنات قصبه گناباد یک اسطوره، شرکت سهامی آب منطقه‌ای خراسان رضوی، مشهد، 292 ص.

سازمان زمین­شناسی و اکتشافات معدنی کشور، 1384- نقشه زمین­شناسی 1:100000 گناباد.

 

References

Appelo, C. A. J. and Postma, D., 2005- Geochemistry, Groundwater and Pollution. 2nd ed. A.A. Balkema, Leiden, The Netherlands (649 pp.).

Back, W., Hanshaw, B. B., Plummer, L. N., Rahn, P. H., Rightmire, C. T. and Rubin, M., 1983- Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol. Soc. Am. Bull. 94, 1415–1429, https://doi.org/10.1130/0016-7606(1983)942.0.CO;2 .

Capaccioni, B., Didero, M., Paletta, C. and Salvadori, P., 2001.- Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers: an example from the Mt Catria–Mt Nerone ridge (Northern Appennines, Italy). J. Hydrol. 253, 14–26, https://doi.org/10.1016/S0022-1694(01)00480-2.

Cardenal, J., Benavente, J. and Cruz-San Julián, J. J., 1994- Chemical evolution of groundwater in Triassic gypsum bearing carbonate aquifers (Las Alpujarras, South Spain). J. Hydrol.161, 3–30, https://doi.org/10.1016/0022-1694(94)90119-8.

Clark, I. and Fritz, P., 1997- Environmental Isotopes in Hydrogeology. Lewis Publishers, NewYork (328 pp.).

Deike, R. G., 1990- Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, South-Central Texas. J. Hydrol. 112,335–373, https://doi.org/10.1016/0022-1694(90)90023-Q.

Fontes, J. C., 1976- Isotopes du milieu et cycle des eauxnaturelles: quelques aspects. Ph.D. Thesis, University of Paris VI, 208 p.

Gat, J. R. and Airey, P. L., 2006- Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global Planet.Chang. 51, 25–33, https://doi.org/10.1016/j.gloplacha.2005.12.004.

Gat, J. R., 1996- Oxygen and hydrogen stable isotopes in the hydrological cycle. Annu.Rev.Earth Planet. Sci. 24, 225–262, http://dx.doi.org/10.1146/annurev.earth.24.1.225.

Herczeg, A. L., Leaney, F. W. J., Stadler, M. F., Allan, G. L. and Fifield, L. K., 1997- Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia. J. Hydrol.192, 271–299, https://doi.org/10.1016/S0022-1694(96)03100-9.

Iwatsuki, T. and Yoshida, H., 1999- Groundwater chemistry and fracture mineralogy in the basement granitic rock in the Tono uranium mine area, Gifu Prefecture, Japan Groundwater composition, Eh evolution analysis by fracture filling minerals. Geochemical Journal 33, 19–32, https://doi.org/10.2343/geochemj.33.19.

Kanduč, T., Mori, N., Kocman, D., Stibilj, V. and Grassa, F., 2012- Hydrogeochemistry of Alpine springs from North Slovenia: insights from stable isotopes. Chem. Geol. 300–301,40–54, https://doi.org/10.1016/j.chemgeo.2012.01.012.

Kohfahl, C., Sprenger, C., Benavente, J. B. H., Meyer, H., FernándezChacón, F. and Pekdeger, A., 2008- Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: a field study in the Granada Basin (Southern Spain). Appl. Geochem. 23, 846–862, https://doi.org/10.1016/j.apgeochem.2007.09.009.

Ladouche, B., Luc, A. and Dörfliger, N., 2009- Chemical and isotopic investigation of rainwater in Southern France (1996–2002): Potential use as input signal for karst functioning investigation. J. Hydrol. 367, 150–164, https://doi.org/10.1016/j.jhydrol.2009.01.012.

Liotta, M., Grassa, F., D'Alessandro, W., Favara, R., Gagliano Candela, E., Pisciotta, A. and Scaletta, C., 2013- Isotopic composition of precipitation and groundwater in Sicily, Italy. Appl. Geochem. 34, 199–206, https://doi.org/10.1016/j.apgeochem.2013.03.012.

Ma, R., Wang, Y., Sun, Z., Zheng, C., Ma, T. and Prommer, H., 2011- Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, Northern China. Appl. Geochem. 26(5), 884–897, https://doi.org/10.1016/j.apgeochem.2011.02.008.

Mazor, E., 1991- Applied Chemical and Isotopic Groundwater Hydrology. Halsted Press, New York (274 pp.).

Moral, F., Cruz-Sanjulián, J. J. and Olias, M., 2008- Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J. Hydrol.360, 281–296, https://doi.org/10.1016/j.jhydrol.2008.07.012.

Paternoster, M., Liotta, M. and Favara, R., 2008- Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy. J. Hydrol. 348, 87–97, https://doi.org/10.1016/j.jhydrol.2007.09.038.

Pu, T., He, Y., Zhang, T., Wu, J., Zhu, G. and Chang, L., 2013- Isotopic and geochemical evolution of ground and river waters in a karst dominated geological setting: a case study from Lijiang basin, South-Asia monsoon region. Appl. Geochem. 33, 199–212, https://doi.org/10.1016/j.apgeochem.2013.02.013.

Rogers, R. J., 1989- Geochemical comparison of groundwater in areas of New England, New York and Pennsylvania, Groundwater, Vol.27, pp. 690-712, https://doi.org/10.1111/j.1745-6584.1989.tb00483.x.

Sami, K., 1992- Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa, Journal of Hydrology, Vol. 139, pp. 27-48, https://doi.org/10.1016/0022-1694(92)90193-Y.

Saunders, J. A. and Toran, L. E., 1994- Evidence for dedolomitization and mixing in Paleozoic carbonates near Oak Ridge, Tennessee. Ground Water 32 (2), 207–214, https://doi.org/10.1111/j.1745-6584.1994.tb00635.x.

Vallejos, A., Diaz-Puga, M. A., Sola, F., Daniele, L., Pulido-Bosch., 2015- Using ion and isotope characterization to delimitate a hydrogeological macrosystem, Sierra de Gador (SE, Spain). Journal of Geochemical Exploration, GEXPLO-05544, 12p, https://doi.org/10.1016/j.gexplo.2015.03.006.

Wayland, K. G., Long, D. T., Hyndman, D. W., Pijanowski, B. C., Woodhdams, S. M. and Haack, Sh. K., 2003- Identifying relationships between  base flow geochemistry and land use with synoptic sampling and R-Mode factor analysis, Journal of  Environmental Quality, Vol. 32, pp.180-190, 10.2134/jeq2003.0180.

Wu, P., Tang, C., Zhu, L., Lui, C., Cha, X. and Tao, X., 2009- Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China. Hydrol. Process. 23, 2012–2022, https://doi.org/10.1002/hyp.7332.