رسوب شناسی و محیط‌های رسوبی تالاب های جنوب و جنوب غرب دریاچه ارومیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه علوم زمین، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 دانشیار، پژوهشکده علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ایران

3 استادیار، گروه علوم زمین، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

4 دکتری زمین شناسی، عضو مرکز ملی تحقیقات فرانسه، CNRS- پاریس- فرانسه

5 دکتری زمین‌شناسی، گروه مخاطرات، زمین شناسی مهندسی و زیست محیطی، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ایران

چکیده

دریاچه ارومیه به‌عنوان یکی از بزرگ‌ترین دریاچه‌های فوق اشباع از نمک جهان واقع در شمال‌غرب ایران است. تعداد زیادی تالاب در حواشی دریاچه ارومیه به­ویژه در بخش جنوب دریاچه واقع شده است. تالاب­ها به عنوان یکی از بسترهای ثبت وقایع محیطی و اقلیمی حائز اهمیت هستند. بررسی رسوب­شناسی و پارامترهای آماری رسوب­شناسی در تحلیل محیط‌های رسوبی مختلف در رسوبات تالاب­های جنوبی اطراف دریاچه ارومیه شامل تالاب کانی برازان و سولدوز، موضوع پژوهش حاضر می‌باشد. هدف از این پژوهش بازسازی نوسانات سطح آب دریاچه ارومیه و تأثیر آن بر محدوده­های تالابی در دوره هولوسن است.  به این منظور تعداد 24 مغزه رسوبی  با بیشینه ژرفای 12 متر و مجموع عمق حدود 200 متر با استفاده از مغزه‌گیر دستی و تعداد 8 مغزه دست نخورده توسط ویبراکورر برداشت و بررسی شد.ر خساره‌های رسوبی براساس بافت و ساخت رسوب، ترکیب رسوبات تخریبی و مواد آلی، رنگ، وجود بقایای گیاهی و صدفی و سایر مؤلفه­های ماکروسکوپی شناسایی و تفکیک شدند. نمونه برداری براساس تغییر در نوع رسوبات و رخساره‌های رسوبی انجام گرفت. تعداد 150عدد نمونه رسوبی جهت انجام آنالیز دانه‌بندی تفکیک شد.دانه‌بندی نمونه­ها به دو روش الک مرطوب و ذرات ریزتر از ماسه (سیلت و رس) توسط دستگاه لیزر (Laser particle Sizer Analysette) انجام شد و با استفاده از نرم افزار سدی لایزر (Sedilizer) پارامترهای آماری رسوب­شناسی محاسبه شد و در نرم‌افزار SPSS مورد تحلیل قرار گرفت. تعداد 2 نمونه از بقایای گیاهی به روش ایزوتوپ C14-AMS، برای آنالیز سن سنجی مورد استفاده قرار گرفت. نتایج، گویای وجود 8 رخساره، متعلق به 3 محیط‌ رسوبی دریاچه‌ای، تالابی و رودخانه‌ای است. نتایج سن­سنجی نیز نشانگر نرخ متوسط رسوب‌گذاری در بخش جنوبی دریاچه ارومیه حدود 5/0 میلی­متر در سال می­باشد. با این وجود نرخ رسوب‌گذاری برای عمق­های مختلف رسوبات متفاوت است. براساس تحلیل­های مغزه­های مختلف، بازسازی جغرافیای قدیمه جنوب دریاچه ارومیه و میزان گسترش آن در 20 هزار سال گذشته انجام گرفت. این مطالعه نشان می‌دهد که در کواترنری پایانی دریاچه ارومیه تا ابتدای دلتای فعلی سیمینه­رود گسترش داشته است. در انتهای پلیستوسن و ابتدای هولوسن پسروی خطوط ساحلی در بخش جنوبی و پیشروی رسوبات آبرفتی رودخانه زرینه­رود و سیمینه­رود در جنوب منطقه اتفاق افتاده است. هولوسن پایانی، با کاهش سطح تراز آب و ایجاد شرایط کمی خشک (در حدود 4 هزار سال گذشته) و گسترش پلایای حاشیه‌ای همراه بوده است. از حدود 2 هزار سال پیش نیز شرایط امروزی بر منطقه حاکم بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Sedimentology and sedimentary environments of South and southwestern wetlands of Lake Urmia

نویسندگان [English]

  • B. Mirzapour 1
  • R. Lak 2
  • M. Aleali 3
  • M. Djamali 4
  • R. Shahbazi 5
1 Ph.D. Student, Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Associate Professor, Research Institute for Earth Sciences, Geological Survey of Iran (GSI), Tehran, Iran
3 Assistant professor, Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Ph.D., Research Scientist, French National Center for Scientific Research (CNRS), Paris, France
5 Ph.D., Management of Geohazards, Engineering and Environmental Geology, Geological Survey of Iran (GSI), Tehran, Iran
چکیده [English]

Lake Urmia is one of the largest salt supersaturated lakes in the world that is located in northwestern Iran. Many wetlands are located around of Lake Urmia, especially in the southern part of the lake. Wetlands are important as a platform for recording environmental and climatic events. The subject of this research is studying sedimentology and statistical parameters of sedimentology in the analysis of different sedimentary environments in the sediments of southern wetlands around Lake Urmia, including Kani Barazan and Solduz wetlands. The purpose of this study is reconstructing the fluctuations of the water table of Lake Urmia and its effect on wetland areas in the Holocene period. For this purpose,   sedimentary cores with maximum depth of 12  meters and total depth of about 200  meters using a handi auger and 8 hole cores by a vibra corer were collected and examined. Sedimentary facies were identified and separated based on texture and sediment structure, composition of destructive sediments and organic matter, color, presence of plant remnant  and shell residues and other macroscopic components. Sampling was performed based on changes in the type of sediments and sedimentary facies. 150  sediment samples were separated for grain size analysis. The samples were analyzed using two methods, wet sieving and particles smaller than sand (silt and clay) by laser device (Laser particle Sizer Analysette). Statistical parameters of sedimentology were calculated using Sedilizer software and were analyzed by SPSS software. Two samples of plant remnant were dated by C14-AMS isotope method. The results indicate that there are  8 facies, belonging to 3  sedimentary environments of lake, wetland and alluvial. The dating results show the average sedimentation rate in the southern part of Lake Urmia is about 0.5  mm per year. However, sedimentation rates vary in different sediment depths. According to the analysis of different cores, the reconstruction of the paleogeography of the south of Lake Urmia and it`s extention had been done in the last 20,000   years. This study shows that in the late quaternary Lake Urmia has expanded to the beginning of the current Siminehrud. At the late Pleistocene and the early Holocene, the coastline regression in the southern part and the alluvial sediments of the Zarrinehrood and Siminehrood rivers occurred in the south of the region. The late Holocene was associated with decreasing water table, slightly dry conditions (around 4000  years ago) and the expansion of marginal playa. The situation in the region has been permanent for about 2000 years.
 

کلیدواژه‌ها [English]

  • Lake Urmia
  • Kani Barazan Wetland
  • Solduz Wetland
  • Sedimentology
  • Sedimentary Environments
  • Sediment Core
کتابنگاری

 

ابراهیمی خوسفی، ز. خسروشاهی، م. نعیمی، م. و زندی فر، س.، 1398-  ارزیابی و پایش تغییرات رطوبت تالاب میقان با استفاده از تکنیک دورسنجی و ارتباط آن با شاخص­های خشک­سالی هواشناسی.  مجله سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (سال دهم/ شماره دوم)، تابستان 1398.

پژوهشکده مهندسی آب دانشگاه تربیت مدرس ، 1395-  تعیین جریان زیست محیطی تالاب‌ها و رودخانه های حوضه دریاچه ارومیه، گزارش مطالعات هیدرولوژی، بخش مبادلات تالاب-آبخوان. اداره محیط زیست آذربایجان شرقی.

حسنی پاک، ع. ا. ،  شرف‌الدین، م.، 1380-  تحلیل داده­های اکتشافی، انتشارات دانشگاه تهران، 991 ص.

درویشی خاتونی، ج.، 1395- تغییرات فراوانی پلت آرتمیا اورمیانا در رسوبات بستر دریاچه ارومیه با نگرشی بر اقلیم دیرینه، فصلنامه علمی پژوهشی اکوبیولوژی تالاب- دانشگاه آزاد اسلامی واحد اهواز، سال هشتم، شماره 82، ص. 28-74.

درویشی خاتونی، ج.، 1394- اقلیم و محیط دیرینه دریاچه ارومیه با استفاده از رسوب­شناسی و ژئوشیمی رسوبی، ماهنامه زمین و معدن، ویژه­نامه دریاچه ارومیه، سازمان زمین شناسی و اکتشافات­معدنی کشور، 10 صفحه.

زمان‌زاده، س.م. و انوشه، م. ، 1392- بررسی پارامترهای گرانولومتریک در محیط بادی – مطالعه موردی: بند ریگ کاشان. فصلنامه علمی – پژوهشی اطلاعات جغرافیایی سپهر، دوره بیست و دوم، شماره هشتاد و هفتم.

شهرابی، م.، 1372- شرح زمین­شناسی چهارگوش ارومیه، مقیاس 1:250000 سازمان زمین شناسی و اکتشافات معدنی کشور.

صادقی­فر، ط. و آزرم­سا، س.ع.، 1394- تحلیل دانه­بندی و بافت رسوب در حاشیه جنوبی دریای خزر (مطالعه موردی: خط ساحلی نور). فصلنامه علوم و فناوری دریا (شماره 73) .

صالحی پور میلانی،  ع.،  یمانی، م. ، مقیمی، ا. ، لک، ر.،  بیگلو، م. ج.، محمدی، ع. ، 1396-  ﺑﺮرﺳﻲﺷﻮاﻫﺪ رﺳﻮﺑﻲﻧﻮﺳﺎﻧﺎتﺳﻄﺢ آب درﻳﺎﭼﻪ اروﻣﻴﻪ در ﻛﻮاﺗﺮﻧﺮی. مجله ﭘﮋوﻫﺶﻫﺎی ژﺋﻮﻣﻮرﻓﻮﻟﻮژی، کمی، سال ششم، شماره 1، تابستان 1396، ص 20-1. 

طلوعی، ج.، 1375- مطالعه و بررسی ژئوشیمیایی و هیدروشیمیایی و شناخت فازهای رسوبات شیمیایی حوضه رسوبی تبخیری دریاچه ارومیه، مسیر بزرگراه شهیدکلانتری، پایان­نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تهران.

عرفان، ش.، رضایی، خ.، لک، ر.، آل علی، م. ، 1398- تلفیق زمین‌آماری مطالعات رسوب‌شناسی و ژئوالکتریک در نهشته‌های کواترنر پهنه‌های ساحلی غربی و شرقی بخش جنوبی دریاچه ارومیه. فصلنامه کواترنری ایران، جلد 5، شماره 1، 78-59.

کتابچی، م.، محمودزاده، د.، فرهودی هفدران، ر.، 1396- برآورد تبادل آب بین تالاب و آبخوان (مطالعه موردی: تالاب کانی برازان)، مجله اکوهیدرولوژی، شماره3، دوره چهارم، پاییز96، ص 709-699.Doi:10.22059/IJE.2017.62503.

لک، ر.، ١٣٨٦-  بررسی رسوب‌شناسی، هیدروشیمی و روند تکاملی شورابه دریاچه مهارلو، شیراز؛ رساله دکتری، دانشگاه تربیت معلم تهران، ١٨٨ صفحه.

لک، ر.، درویشی خاتونی، ج.، محمدی، ع.، 1390- مطالعات پالئولیمنولوژی و علل کاهش ناگهانی تراز آب دریاچه ارومیه، فصلنامه زمین‌شناسی کاربردی دانشگاه آزاد زاهدان، سال 7 (1390)، شماره 4: 372-357.

لک ، ر. ، درویش خاتونی، ج.، محمدی ، ا.، 1391- مطالعات پالئولیمنولوژی و علل کاهش ناگهانی سطح آب دریاچه ارومیه. مجله زمین شناسی کاربردی. سال 7، شماره 4، ص 343-358.

محمدی، ع.، 1384- بررسی تاریخچه رسوبگذاری هولوسن؟ دریاچه ارومیه بر اساس مطالعه مغزه­های تهیه شده در مسیر بزرگراه شهید کلانتری، پایان نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تهران، 127 ص.

مرکز توسعه منابع آب، 1393-  به روزرسانی بودجه آب حوضه دریاچه ارومیه. شرکت مشاوره آب و توسعه پایدار.

موسوی حرمی، ر.، 1367- "رسوب­شناسی".  انتشارات آستان قدس رضوی، ٤٧٩ ص.

موسوی حرمی، ر.، 1381-  «رسوب­شناسی»، انتشارات آستان قدس رضوی، چاپ هشتم، 474 ص.

مؤسسه تحقیقات آب،  1385- گزارش تلفیقی، مدیریت یکپارچه منابع آب حوضه دریاچه ارومیه. اداره آب منطقه­ای آذربایجان غربی.

 

References

 

Abdi, L., Rahimpour-Bonab, H., Mirmohammad Makki M., Probst, J., Langeroudi, S. R., 2018- Sedimentology, mineralogy, and geochemistry of the Late Quaternary Meyghan Playa sediments, NE Arak, Iran: palaeoclimate implications. Arabian Journal of Geosciences, 11(19): 589.

Agha Kouchak, A., Norouzi, H., Madani, K., Mirchi, A.,  Azarderakhsh, M., Nazemi, A., Nasrollahi, N., Farahmand, A., Mehran, A., Hasanzadeh, E., 2015- Aral Sea syndrome desiccates Lake Urmia: call for action. Journal of Great Lakes Research, v. 41:307–311.

Alizadeh-Choobari, O., Ahmadi-Givi, F., Mirzaei, N., Owlad, E., 2016- Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. Int J Climatol.

Alther, G. A., 1979- A simplified statistical sequence applied to routine water quality analysis, a case history,Journal of Ground Water, Vol. 17(6): 556-561.

Asadpour, Y., Motallebi, A., Eimanifar, A., 2007- Biotechnological approach to produce chitin and chitosan fromthe shells of Artemia urmiana Gunther, 1899 (Branchiopoda, Anostraca) cysts in Urmia Lake, Iran. J. Crustaceana 80(2): 171-180.

Azari Takami, G., 1993- Urmiah Lake as a valuable source of Artemia for feeding sturgeon fry. J Vet Fac Uni Tehran 47: 2-14.

Benison, K. C. and Goldstein, R. H., 2001- Evaporites and siliciclastics of the Permian Nippewalla group of Kansas, USA: a case for non-marine deposition in saline lakes and saline pans, Sedimentology, Vol. 48: 165-188.

Djamali, M., de Beaulieu, J. L., Shah Hosseini, M., Andrieu Ponel, V., Amini, A., Akhani, H., Leroy, S.A.G., Stevens, L., Alizadeh, H., Ponel, P. and Brewer, S., 2008- An Upper Pleistocene long pollen record from the Near East, the 100m-long sequence of Lake Urmia, NW Iran. Quaternary Res. 69, 413-420.

Esmaeili Dahesht, L., Negarestan, H., Eimanifar, A., Mohebbi, F. and Ahmadi, R., 2010-  The fluctuations of physicochemical factors and phytoplankton populations of Urmia Lake, Iran, Iranian Journal of Fisheries Sciences,Vol. 9(3): 368-381.

Folk, R. L., 1974- Petrology of Sedimentary Rocks. Hemphill Publ, Co, Austin, TX, 182 p.

Ghalibaf, M. B., Moussavi, Z., 2014- Development and environment in Urmia Lake of Iran. European Journal of Sustainable Development, 3(3): 219226.

Hamzeh, M. A., Gharaie, M.H.M., Lahijani, H.A.K., Djamali, M., Harami, R.M. and Naderi-Beni, M., 2016- Holocene hydrological changes in SE Iran, a key region between Indian Summer Monsoon and Mediterranean winter precipitation zones, as revealed from a lacustrine sequence from Lake Hamoun. Quaternary International, 408: 25-39.

Jiang, H. and Ding, Z., 2010- Eolian grain-size signature of the Sikouzi lacustrine sediments (Chinese Loess
Plateau): Implications for Neogene evolution of the East Asian winter monsoon. Geological Society of
America Bulletin, 122: 843-854.

Kehl, M., 2009- Quaternary climate change in Iran, Erdkonde, 63, N1, 1-17.

Kelts, K. and Shahrabi, M., 1986- Holocene sedimentology of hypersaline Lake urmia, Nortwestern Iran, Palaeogeography, Palaeoclimatology, Palaeoecology, 54: 105-130.

Kirillin, G. and Shatwell, T., 2016-  Generalized scaling of seasonal thermal stratification in lakes. J Earth Science Reviews 161:179–190.

Kwak, K.Y., Choi, H., Cho, H.G., 2016- Paleo-environmental change during the late Holocene in the southeasternYellow Sea, Korea. Applied Clay Science. CLAY-03857. Page 1-7.

Lak, R., Fayazi, F., Nakhaei, M., 2007- Sedimentological evidences of a major drought in the Mid-Late Holoceneof the Lake Maharlou, SW Iran. 4th International Limnogeology Congress, Alghero, Italy.

Lewis, D.W. and McConchie, D., 1994-  Analytical Sedimentology, Chapman and Hall. New York, London, p 197.

Li, J., Lowenstein, T.K., Brown, C.B., Ku, T.L. and Luo, S.A., 1996- 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California. J Paleogeography, Paleoclimatology, Paleoecology 123:179-203.

Reimer, P.J., Bard, E., Bayliss, A.,   Beck, J.W., Blackwell, P.G.,   Ramsey. C.B.,   Buck, C. E.,  Cheng, H.,   Edwards. R. L.,   Friedrich, M.,   Grootes, P. M.,   Guilderson, T.P.,   Haflidason, H.,  Hajdas, I.,  Hatté, C.,   Heaton. T. J.,   Hoffmann, D. L.,   Hogg, A. G.,   Hughen, K. A.,  Kaiser, K. F.,  Kromer, B.,   Manning, S. W.,  Niu. M.,  Reimer, R. W.,   Richards, D. A.,  Scott, W. M.,   Southon, J. R.,  Staff, R. A.,  Turney, C. S. M.,  and  Van der Plicht, J., 2013- IntCal 13 and Marine 13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55(4): 1869–1887.

Shadkam, S., Ludwig, F., Van Vliet, M.T.H., Pastor, A. and Kabat, P., 2016- Preserving the world second largest hypersaline lake under future irrigation and climate change. Sci Total Environ 559:317–325. DOI: 10.1016/j.scitotenv.2016.03.190.

Sharifi, A., Shah-Hosseini, M., Pourmand, A., Esfahaninejad, M. and Haeri-Ardakani, O., 2018- The Vanishing of Urmia Lake: A Geolimnological Perspective on the Hydrological Imbalance of the World’s Second Largest Hypersaline Lake.

Sorgeloos, P., 1997- Resource assessment of Urmia lake Artemia cysts and biomass. In Artemia Lake Cooperation Project, Item B Edited by: Sorgeloos P. Laboratory of Aquaculture and Artemia Reference Center, Belgium,1-114.

Valero-Garces, B.L., Grosjean, M., Kelts, K., Schreier, H. and Messerli, B., 1999-  Holocene lacustrine deposition in the Atacama Altiplano: facies models, climate and tectonic forcing. J Paleogeography, Paleoclimatology, Paleoecology 151:101-125.

Warren, J., 2006- Evaporates: sediments, resources and hydrocarbons. Springer, Berlin,  p 1035.