کانسار چاه‌زرد: کانه‌زایی نقره- طلای اپی‌ترمال با میزبان برشی در کمربند ارومیه- دختر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه زمین شناسی اقتصادی ، دانشگاه تربیت مدرس، تهران، ایران

2 دانشجوی دکتری، گروه زمین شناسی اقتصادی، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار، دانشگاه آزاد اسلامی واحد اسلامشهر، تهران، ایران؛ پژوهشکده علوم‌زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ایران

4 استاد، مرکز عالی تحقیقاتی کانسارها، دانشگاه تاسمانیا، هوبارت، استرالیا

چکیده

کانسار نقره- طلای اپی­ترمال با میزبان برشی چاه­زرد، درون یک مجموعه آتشفشانی با ترکیب آندزیتی تا ریولیتی در بخش مرکزی کمربند ماگمایی ارومیه- دختر قرار دارد. در  این منطقه، فعالیت­های ماگمایی و گرمابی در ارتباط با زمین‌ساخت کششی سامانه گسلی امتدادلغز ده­شیر- بافت رخ داده است. سنگ میزبان مجموعه آتشفشانی شامل سنگ­های آتشفشانی و رسوبی ائوسن است که توسط سنگ­های رسوبی میوسن پوشیده شده­اند. داده­های سن­سنجی اورانیم- سرب زیرکن به روش LA-ICP-MS سن­هایی بین 14/0±36/6 و 24/0±19/6 میلیون سال با میانگین 16/0±23/6 میلیون سال را برای فعالیت­های ماگمایی در چاه­زرد مشخص کرده است. برش­ها و رگه­ها همزمان و پس از مراحل اصلی فوران­های انفجاری ماگمایی- گرمابی و رخدادهای برشی فراتوماگمایی که ناشی از جایگیری نزدیک به سطح ریولیت پورفیری است، تشکیل شده­اند. براساس نقشه­های دقیق تهیه­شده، سه واحد برشی مجزا در منطقه قابل تشخیص است: برش­ ولکانی‌کلاستیک با زمینه چیره تخریبی، برش پلی­میکتیک خاکستری با یک بخش اصلی از سیمان گرمابی و برش مونو- پلی­میکتیک با زمینه ریزبلور آرژیلیکی. برش‌های پلی‌میکتیک، بخش قابل معدن­کاری اصلی را تشکیل می­دهند؛ در حالی‌که برش­های ولکانی‌کلاستیک به­طور نسبی نفودناپذیر و به‌شدت بی­بار هستند. دگرسانی­های گرمابی مختلفی در رخنمون‌های سطحی رخ داده‌اند که مساحتی نزدیک به 9 کیلومتر مربع را می­پوشانند. مجموعه­های دگرسانی گرمابی به‌صورت زونه در پیرامون برش­ها و رگه­ها دیده می‌شود و شامل کوارتز ثانویه، ایلیت، پیریت، آدولاریا، کلریت، انواع کانی­های کربناتی و میزان کمی فلدسپار قلیایی است. اکسیدها و هیدروکسیدهای آهن، ژاروسیت، ژیپس، کائولینیت، هالویزیت و مقادیر کمی آلونیت، کانی‌های برون‌زادی (سوپرژنی) هستند که جانشین کانی­های اولیه شده و شکستگی­ها و فضاهای خالی را پر کرده­اند. فلزات قیمتی همراه با سولفیدها و سولفوسالت­ها به‌صورت دانه­پراکنده درون رگه­ها و سیمان برش­ها رخ داده­اند. یک روند افزایشی از پیریت چیره (مرحله اول) به پیریت- سولفید فلزات پایه و سولفوسالت چیره (مرحله دوم و سوم) تا سولفید فلزات پایه چیره (مرحله چهارم) در کانی­شناسی برش­ها و رگه­ها دیده می­شود. ته­نشست کانی­های باطله نیز روندی افزایشی از مجموعه­های ایلیت- کوارتز به کوارتز- آدولاریا، کربنات و سرانجام ژیپس چیره  نشان می­دهد. طلای آزاد در مراحل دوم و چهارم به‌ویژه با درهم­رشدی با پیریت، کوارتز، کالکوپیریت، گالن، اسفالریت و تنانتیت- تتراهدریت غنی از نقره و همچنین به‌صورت میانبار (انکلوزیون) در پیریت رخ داده است. سن اورانیم- سرب 24/0±19/6 میلیون سال برای جایگیری ماگماهای ریولیتی، بیانگر بیشترین سن برای کانه­زایی در چاه­زرد تلقی می­شود.  این سن می­تواند نشان‌دهنده یک رخداد کانه­زایی کشف­نشده در کمربند ارومیه- دختر در این زمان باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Chah Zard Deposit: Breccia-Hosted Epithermal Ag-Au Mineralization in the Urumieh-Dokhtar Belt

نویسندگان [English]

  • Majid Ghaderi 1
  • H. Kouhestani 2
  • M. H. Emami 3
  • K. Zaw 4
1 Associate Professor, Department of Economic Geology, Tarbiat Modares University, Tehran, Iran
2 Ph.D. Student, Department of Economic Geology, Tarbiat Modares University, Tehran, Iran
3 Associate Professor, Islamic Azad University, Islamshahr Branch, Tehran, Iran; Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran
4 Professor, CODES ARC Centre of Excellence in Ore Deposits, University of Tasmania, Hobart, Australia
چکیده [English]

The breccia-hosted epithermal Ag-Au deposit of Chah Zard is located within an andesitic to rhyolitic volcanic complex in the central part of the Urumieh-Dokhtar magmatic belt. At this location, magmatic and hydrothermal activity was associated with local extensional tectonics, formed in the Dehshir-Baft strike-slip fault system. The host rocks of the volcanic complex consist of Eocene sedimentary and volcanic rocks covered by Miocene sedimentary rocks. LA-ICP-MS U–Pb zircon geochronology yields ages between 6.36±0.14 and 6.19±0.24 Ma, and a mean age of 6.23±0.16 Ma for magmatic activity at Chah Zard. Breccias and veins were formed during and after the waning stages of strong explosive eruption of magmatic-hydrothermal and phreatomagmatic brecciation events due to shallow emplacement of the rhyolite porphyry. Detailed systematic mapping leads to the recognition of three distinct breccia bodies: the volcaniclastic breccia with a dominantly clastic matrix, the gray polymict breccia with a greater proportion of hydrothermal cements, and the mono-polymict breccia with argillic groundmass matrix. The polymictic breccias generated bulk-mineable ore, whereas the volcaniclastic breccia is relatively impermeable and largely barren. Variable hydrothermal alteration occurs in outcrops, covering about 9 km2 at Chah Zard. Hydrothermal alteration assemblages are zoned around the breccias and veins, consisting of secondary quartz, illite, pyrite, adularia, chlorite, various carbonate minerals, and minor K-feldspar. Iron oxide-hydroxide, jarosite, gypsum, kaolinite, halloysite and rare alunite are the supergene alteration minerals replacing primary minerals, and filling the fractures and vugs. Precious metals occur with sulfide and sulfosalt minerals as disseminations in the veins and breccia cement. There is a progression from pyrite-dominated (stage 1) to pyrite-base metal sulfide and sulfosalt-dominated (stages 2 and 3) to base metal sulfide-dominated (stage 4) breccias and veins. Deposition of gangue minerals progressed from illite-quartz to quartz-adularia, carbonate and finally gypsum-dominated assemblages. Free gold occurs in stages 2 and 4, principally as intergrown with pyrite, quartz, chalcopyrite, galena, sphalerite, and Ag-rich tennantite-tetrahedrite; and also as inclusions in pyrite. The U-Pb zircon age of 6.19±0.24 Ma for emplacement of the rhyolitic magmas represents the maximum age of mineralization at Chah Zard. It may indicate that there was a previously unrecognized mineralization event in Urumieh-Dokhtar at this time.

کلیدواژه‌ها [English]

  • Epithermal
  • Breccia
  • U-Pb Geochronology
  • Chah Zard
  • Urumieh-Dokhtar

تاج­الدین، ح.­ ع.، 1377- زمین‌شناسی، کانی‌شناسی، ژئوشیمی و ژنز اثر معدنی طلای دارستان (جنوب دامغان). پایان­نامه کارشناسی­­ارشد، دانشکده علوم پایه، دانشگاه تربیت­ مدرس.

رشیدنژاد عمران، ن.، 1371- بررسی تحولات سنگ­شناسی و ماگمایی و ارتباط آن با کانی­سازی طلا در منطقه باغو (جنوب- جنوب ­شرق دامغان). پایان­نامه کارشناسی­ارشد، دانشکده علوم ، دانشگاه تربیت ­معلم.

کوهستانی، ح.، 1390- زمین­شناسی، دگرسانی، ژئوشیمی ایزوتوپی و خاستگاه کانسار نقره-  طلای چاه­زرد، جنوب ­باختری یزد. رساله دکتری، دانشکده علوم پایه، دانشگاه تربیت­مدرس.

کوهستانی، ح.، قادری، م.، امامی، م. ه.، 1388- ویژگی­های زمین­شناسی، دگرسانی و کانه­زایی کانسار چاه­زرد، جنوب ­باختری یزد: کانی­سازی نقره- طلای اپی­ترمال با میزبان برشی. بیست و هفتمین گردهمایی علوم‌زمین، سازمان زمین­شناسی و اکتشافات معدنی کشور. چکیده مقالات.

مهرابی، ب.، هوشمندزاده، ع.، کریمی، ز. و رشیدی، ب.، 1383- کانی­سازی اپی­ترمال طلا در بزمان (بلوچستان). بیست و سومین گردهمایی علوم‌زمین، سازمان زمین­شناسی و اکتشافات معدنی کشور. چکیده مقالات. 

 

 

References

Asadi, H. H., 2008- First stage drilling report on Dalli porphyry Cu-Au prospect, Central Province of Iran, 29 P.

Baker, J., Peate, D., Waight, T. & Meyzen, C., 2004- Pb isotopic analysis of standards and samples using a Pb-207-Pb-204 double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology, 211: 275-303.

Berger, B. R., Tingley, J. V. & Drew, L. J., 2003- Structural localization and origin of compartmentalized fluid flow, Comstock lode, Virginia City, Nevada. Economic Geology, 98: 387-408.

Black, L. P. & Gulson, B. L., 1978- The age of the Mud tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3: 227-232.

Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleninikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S. & Foudoulis, C., 2004- Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS, and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205: 115-140.

Black, L. P., Kamos, L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C., 2003- TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology, 200: 155–170.

Bowden, C. D., 2007- Epithermal systems of the Seongsan district, South Korea, an investigation on the geological setting and spatial and temporal relationships between high and low sulfidation system. PhD Thesis. School of Earth Sciences, James Cook University of NorthQueensland, Australia.

Brown, P. R. L. & Ellis, A. J., 1970- The Ohaki-Broadlands hydrothermal area, New Zealand; mineralogy and related geochemistry. American Journal of Science, 269: 97-131.

Brown, P. R. L., 1978- Hydrothermal alteration in active geothermal fields. Annual Review of Earth and Planetary Sciences, 6: 229-250.

Burnham, C. W. & Ohmoto, H., 1980- Late-stage processes of felsic magmatism. Min. Geol. Spec. Iss., 8: 1-11.

Burnham, C. W., 1979- Magmas and hydrothermal fluids. In Barnes, H.L., ed., Geochemistry of the hydrothermal ore deposits. J. Wiley and Sons, New York, p. 71-136.

Burnham, C. W., 1985- Energy release in subvolcanic environments: implications for breaccia formation. Economic geology, 80: 1515-1522.

Carman, G. D., 1994- Genesis of the Ladolam gold deposit, Lihir Island, Papua New Guinea. Unpublished Ph.D. Thesis, Department of Earth Sciences, Monash University, Australia, 226 p.

Cole, J. W., 1990- Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand. Bulletin of Volcanology, 52: 445-459.

Cooke, D. R. & Simmons, S. F., 2000- Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology, 13: 221-244.

Corbett, G. J. & Leach, T. M., 1998- Southwest Pacific Rim gold-copper systems: Structure, alteration, and mineralization. Society of Economic Geologists Special Publication, 6, 237 p.

Daliran, F., Paar, W., Neubauer, F. & Rashidi, B., 2005- New discovery of epithermal gold at Chahnali prospect, Bazman volcano, SE-Iran. Mineral deposit research: Meeting the global change, p. 917-919.

Davies, A. G. S., 2002- Geology and genesis of the Kelian gold deposit, East Kalimantan, Indonesia. Unpublished Ph.D. Thesis, University of Tasmania, Australia, 404 p.

Davies, A. G. S., Cooke, D. R., Gemmell, J. B., Van Leeuwen, T., Cesare, P. & Hartshorn, G., 2008b- Hydrothermal breccias and veins at the Kelian gold mine, Kalimantan, Indonesia: Genesis of a large epithermal gold deposit. Economic Geology, 103: 717–757.

Davies, A. G. S., Cooke, D., Gemmell, J. & Simpson, K., 2008a - Diatreme Breccias at the Kelian Gold Mine, Kalimantan, Indonesia: Precursors to Epithermal Gold Mineralization: Economic Geology, v. 103, p. 689-716

Dong, G. & Morrison, G. W., 1995- Adularia in epithermal veins, Queensland; morphology, structural state and origin. Mineralium Deposita, 30: 11-19.

Ebrahimi, S., Alirezaei, S. & Yuanming, P., 2009- Various epithermal precious metal systems in the Urumieh-Dokhtar magmatic assemblage, Iran. Goldschmidt Conference Abstracts.

Einaudi, M. T., Hedenquist, J. W. & Inan, E. E., 2003- Sulfidation state of hydrothermal fluids: the porphyry-epithermal transition and beyond. In: Simmons, SF, Graham IJ (eds) Volcanic, geothermal and ore-forming fluids: rulers and witnesses of processes within the Earth. Society of Economic Geologists and Geochemical Society, Special Publication 10, pp 285-313.

Faure, K., Matsuhisa, Y., Metsugi, H., Mizota, C. & Hayashi, S., 2002- The Hishikari Au-Ag epithermal deposit, Japan: oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Economic Geology, 97: 481-498.

Garwin, S., Hall, R. & Watanabe, Y., 2005- Tectonic setting, geology and gold and copper mineralization in Cenozoic magmatic arcs of southeast Asia and the west Pacific. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, J.R., Richards, J.P., (eds) One Hundredth  Anniversary Volume. Economic Geology, pp 891-930.

Ghaderi, M. & Kouhestani, H., 2010- Chah Zard deposit: the first report of Ag-Au epithermal mineralization with brecciated host in Iran. 7th Annual Meeting of Asia Oceania Geosciences Society (AOGS), Hyderabad, India, Abstract.

Hedenquist, J. W. & Henley, R. W., 1985- Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: their origin, associated breccias, and relation to precious metal mineralization. Economic Geology, 80: 1640-1668.

Hedenquist, J. W., 1990- The thermal and geochemical structure of the Broadlands-Ohaaki geothermal system, New Zealand. Geothermics, 19: 151-185.

Hedenquist, J. W., Izawa, E., Arribas, A. & White, N. C., 1996- Hydrothermal system in volcanic arcs, origin of the exploration for epithermal gold deposits: a short course at Mineral Resource Department. Geological Survey of Japan, Higashi 1-1-3, Tsukuba 305, Japan, 139 p.

Hedenquist, J. W., Matsuhisa, Y., Izawa, E., White, N. C., Giggenbach, W. F. & Aoki, M., 1994- Geology, geochemistry and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan. Economic Geology, 89: 1-30.

Henley, R. W. & Ellis, A. J., 1983- Geothermal systems ancient and modern: a geochemical review. Earth Science Reviews,19: 1-50.

Henley, R. W., 1985- The geothermal framework of epithermal deposits. Reviews in Economic Geology, 2: 1-24.

Hosono, T. & Nakano, T., 2004- Pb-Sr isotopic evidence for contribution of deep crustal fluid to the Hishikari epithermal gold deposit, southwestern Japan. Earth and Planetary Science Letters, 222: 61-69.

Hudson, D. M., 2003- Epithermal alteration and mineralization in the Comstock district, Nevada. Economic Geology, 98: 367-385.

Izawa, E. & Cunningham, C. G., 1989- Hydrothermal breccia pipes and gold mineralization in the Iwashita orebody, Iwato deposit, Kyushu, Japan. Economic Geology, 84: 715-724.

Izawa, E., Urashima, Y., Ibaraki, K., Suzuki, R., Yokoyama, T., Kawasaki, K., Koga, A. & Taguchi, S., 1990- The Hishikari gold deposit: High-grade epithermal veins in Quaternary volcanic Of southern Kyushu, Japan. Journal of Geochemical Exploration, 36: 1-56.

Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A., 2004- The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211: 47-69.

John, D. A., 2001- Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: Characteristics, distribution, and relationship to magmatism. Economic Geology, 96: 1827-1853.

Kosler, J., 2001- Laser-ablation ICPMS study of metamorphic minerals and processes. In: Sylvester, P. J., (ed) Laser-ablation-ICPMS in the earth sciences; principles and applications, Mineralogical Association of Canada Short Course Handbook, 29: 185-202.

Kouhestani, H., Ghaderi, M. & Zaw, K., 2010- Chah Zard, a breccia-hosted epithermal silver-gold deposit in the Tethyan belt of Iran. 24th Victorian Universities Earth & Environmental Sciences Conference (VUEES), Melbourne, Australia, Abstract.

Lioyd, E. F., 1959- The hot springs and hydrothermal eruptions of Waiotapu, New Zealand. Journal of Geology-Geophysics, 2: 141-176.

Lorenz, V., 1975- Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Physics and Chemistry of the Earth, 9: 17–27.

Lorenz, V., 1985- Maars and diatremes of phreatomagmatic origin: a review. Trans. Geol. Soc. S. Afr., 88: 459-470.

Ludwig, K. R., 1998- Isoplot: A plotting and regression program for radiogenic isotope data, version 3.00.

Matsuhisa, Y., Morishita, Y. & Sato, Y., 1985- Oxygen and carbon isotope variations in gold-bearing hydrothermal veins in the Kushikino mining area, southern Kyushu, Japan. Economic Geology, 80: 283-293.

Meffre, S., Large, R. R., Scott, R., Woodhead, J., Chang, Z., Gilbert, S. E., Danyushevsky, L. V., Maslennikov, V. & Hergt, J. M., 2008- Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochimica et Cosmochimica Acta, 72: 2377-2391.

Nelson, C. E. & Giles, D. L., 1985- Hydrothermal eruption mechanisms and hot spring gold deposits. Economic Geology, 80: 1633-1639.

Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A. & Maas, R., 2010- Improved laser ablation U-Pb zircon geochronology through robust down-hole fractionation correction. Geochemistry, Geophysics, Geosystems, 11: 1525-2027.

Persian Gold, 2007- Annual report and accounts, 40 p.

Persian Gold, 2008- Interim results for the six month period exploration in Iran, 8 p.

Reyes, A. G., 1990- Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, 43: 279-309.

Richards, J. P., Wilkinson, D. & Ullrich, T., 2006- Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101: 1455–1496.

Shamanian, G. H., Hedenquist, J. W., Hattori, K. H. & Hassanzadeh., J., 2004- The Gandy and Abolhassani epithermal prospects in the Alborz magmatic arc, Semnan province, northern Iran. Economic Geology, 99: 691–712.

Sillitoe, R. H. & Hedenquist, J. W., 2003- Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious-metal deposits. In: Simmons, S.F., Graham, I., (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Society of Economic Geologists, Special Publication, 10: 315-343.

Sillitoe, R. H., 1985- Ore-related breccias in volcanoplutonic arcs. Economic Geology, 80: 1467–1514.

Sillitoe, R. H., 1999- Styles of high-sulphidation gold, silver and copper mineralization in porphyry and epithermal environments. Pacrim, 99 Proceedings, Bali, Indonesia; The Australasian Institute of Mining and Metallurgy, Melbourne, pp 29-45.

Simmons, S. F. & Brown, P. R. L., 2000- Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Economic Geology, 95: 971-999.

Simmons, S. F., White, N. C. & John, D. A., 2005- Geological characteristics of epithermal precious and base metal deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, J.R., Richards, J.P., (eds) One Hundredth Anniversary Volume. Economic Geology, pp 485-522.

Thompson, A. J. B. & Thompson, J. F. H., 1998- Atlas of alteration: A field guide to hydrothermal alteration minerals. Alpine Press Ltd. Vancouver, British Columbia, 119 p.

Tosdal, R. M. & Richards, J. P., 2001- Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits. Reviews in Economic Geology, 14: 157–181.

Vikre, P. G., McKee, E. H. & Silberman, M. L., 1998- Chronology of Miocene hydrothermal and igneous events in the western Virginia Range, Washoe, Storey and Lyon counties, Nevada. Economic Geology, 83: 864-874.

Wallier, S., Rey, R., Kouzmanov, K., Pettke, T., Heinrich, C., Leary, S., O’Connor, T, C. G., Vennemann, T. & Ullrich, T., 2006- Magmatic fluids in the breccia-hosted epithermal Au-Ag deposit of RosiaMontana, Romania. Economic Geology, 101: 923–954

White, N. C. & Hedenquist, J. W., 1995- Epithermal gold deposits. Styles, characteristics and exploration. SEG Newsletter, 27: 1-13.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J. C. & Speigel, W., 1995- 3 natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostandards Newsletter, 19: 1-23.

Wurst, A. T., 2004- Geology and genesis of the Permata- Batu Badinding- Hulubai and Kerikil Au-Ag low sulfidation epithermal deposits, Mt Muro, Kalimantan, Indonesia. PhD Thesis. University of Tasmania, Australia.

Yilmaz, H., Oyman, T., Arehart, G. B., Colakoglu, A. R. & Billor, Z., 2007- Low-sulfidation type Au-Ag mineralization at Bergama, Izmir, Turkey. Ore Geology Reviews, 32: 81-124.

Yilmaz, H., Oyman, T., Sonmez, F. N., Arehart, G. B. & Billor, Z., 2010- Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial Volcanic rocks, Sahinli/ Tespih Dere (Lapseki/ WesternTurkey). Ore Geology Reviews, 37: 236-258.

Zarasvandi, A., Liaghat, S. & Zentilli, K., 2005- Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, Central Iran. International Geology Review, 47: 620–646.

Zhang, Z., Mao, J., Wang, Y., Pirajno, F., Liu, J. & Zhao, Z., 2010- Geochemistry and geochronology of the volcanic rocks associated with the Dong'an adularia–sericite epithermal gold deposit, Lesser Hinggan Range, Heilongjiang province, NE China: Constraints on the metallogenesis. Ore Geology Reviews, 37: 158-174.