پترولوژی و ژئوشیمی پریدوتیت‌های کمپلکس افیولیتی فنوج- مسکوتان، مکران، جنوب ‌خاوری ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه زمین شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 استادیار، پژوهشکده علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران

3 دانشیار، سازمان علوم مرزی، دانشگاه کانازاوا، کانازاوا، ژاپن

4 دانشیار، گروه زمین‌شناسی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

توالی گوشته‌ای رخنمون‌یافته در باختر محدوده فنوج- ­مسکوتان، دربردارنده لرزولیت و هارزبورژیت کلینوپیروکسن‌دار با بافت پورفیروکلاستیک، لرزولیت ریزبلور با کانی‌های نوظهور، عدسی‌های پراکنده کرومیتیت و نفوذی­های گابرویی قطع‌کننده است. بررسی‌های سنگ‌نگاری و داده‌های مایکروپروب، شواهدی از فعل و انفعالات پریدوتیت/مذاب، فرایندهای پس از ذوب و فعل و انفعالات ساب‌سالیدوس را نشان می‌دهند که با ظهور دو نسل پیروکسن-  الیوین دگرشکل و اولیه و پیروکسن-­ الیوین-­ آمفیبول نوظهور و ریزبلور تجلی یافته است. کانی‌های نسل دوم به‌صورت میانبار، بینابینی و ریزبلور تشکیل شده‌اند. این دو نسل از کانی‌ها، ویژگی‌های ژئوشیمیایی کاملاً متمایز دارند، به‌گونه‌ای‌که کانی‌های نسل اول، قابل مقایسه با پریدوتیت‌های پشته‌های میان‌اقیانوسی و کانی‌های نسل دوم، ویژگی‌هایی متمایل به محیط‌های فرافرورانش را نشان می­دهند. بنابراین ترکیب شیمیایی کانی‌های نسل‌های مختلف، نشان از سنگ‌زایی متفاوت سنگ‌های اولترامافیک کمپلکس افیولیتی فنوج- مسکوتان دارد. تفسیر داده‌های شیمیایی از سنگ کل نشان می‌دهد که این سنگ‌ها منبع گوشته‌ای از نوع مورب تهی‌شده دارند که 5 تا 15 درصد ذوب بخشی را تحمل کرده‌اند. بررسی الگوهای عناصر خاکی کمیاب بهنجارشده با مقادیر کندریت و مقایسه آنها با الگوهای گوشته‌ای از نوع مورب تهی‌شده (DMM)، نشانگر غنی‌شدگی LREE و HREE نسبت به MREE و ارائه الگوهای U شکل است، بنابراین پریدوتیت‌های کمپلکس افیولیتی فنوج- مسکوتان، تحول چندمرحله‌ای را تجربه کرده‌اند و ویژگی‌هایی از محیط آبیسال تا پهنه فرافرورانش نشان می‌دهند. می‌توان گفت که گذر از محیط آبیسال به‌سمت فرافرورانش متأثر از سیال‌های برخاسته از صفحه فرورونده بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Petrology and Geochemistry of Peridotites fromFannuj-Maskutan Ophiolitic Complex, Makran Zone, SE Iran

نویسندگان [English]

  • M. E. Moslempour 1
  • M. Khalatbari-Jafari 2
  • T. Morishita 3
  • M. Ghaderi 4
1 Ph. D. Student, Department of Geology, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Assistant Professor, Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran
3 Associate Professor, Frontier Science Organization, Kanazawa University, Kanazawa, Japan
4 Associate Professor, Department of Geology, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Mantle sequences exposed in west of Fannuj-­Maskutan area comprise of lherzolite and porphyroclastic cpx-bearing harzburgite in the lower part and recrystallized fine-grained lherzolite with chromitite lenses in the upper parts of the sequence. Petrography studies and microprobe data show evidence of melt/peridotite interactions, post-melting processes and subsolidus interactions associated with the appearance of two generations of deformed primary pyroxene-olivine and fine-grained pyroxene-olivine-amphibole neoblasts. Second generation of minerals formed as inclusion, interstitial and fine-grained. These two groups of minerals have different geochemical characteristics, i.e., the first group are comparable with abyssal peridotites and the second group are comparable to suprasubduction peridotites. Therefore, the chemical compositions of different generations of minerals show different petrogenesis for ultramafic rocks of the Fannuj-­Maskutan ophiolitie complex. Interpretation of whole rock chemical data indicate that these rocks have a depleted MORB mantle source which underwent 5-15% partial melting. Rare earth element patterns normalized with chondrite standard values and compared with patterns of depleted MORB mantle (DMM), indicate enrichment in LREE/MREE ration and show U-shape patterns. Thus, the peridotites of the Fannuj-Maskutan ophiolitie have experienced multistage evolution and show characteristics of abyssal environment to suprasubduction zone. It might be said that transition from abyssal environment to suprasubduction has been affected by fluids derived from the subducted slab.
 

کلیدواژه‌ها [English]

  • Makran
  • Neo-Tethys
  • Peridotite
  • MORB
  • Mantle section
  • Supra-subduction zone (SSZ)
  • Abyssal
افتخارنژاد، ج.، ارشدی، س. و مهدوی، م. ا.، 1366- نقشه زمین‌شناسی 1:100000 چهارگوش فنوج، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
راستین، م.، 1379- ژئوشیمی و پترولوژی کمپلکس افیولیتی مختارآباد- رمشک، واقع در زون مکران، جنوب ‌شرق کرمان، پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان، 188 صفحه.
کنعانیان، ع.، 1380- پترولوژی و ژئوشیمی مجموعه افیولیتی کهنوج، رساله دکتری، دانشگاه تربیت مدرس، 240 صفحه.
مسلم‌پور، م. ا. و خلعت‌بری جعفری، م.، 1389- بررسی توالی خروجی افیولیت مسکوتان، جنوب‌باختر ایرانشهر، استان سیستان و بلوچستان، چهاردهمین همایش انجمن زمین‌شناسی ایران و بیست و هشتمین گردهمایی علوم‌زمین، دانشگاه ارومیه.
مهاجران، ک.، 1378- مطالعه پترولوژیکی منطقه افیولیتی سرزه، شمال شهرستان فنوج، استان سیستان و بلوچستان، پایان‌نامه کارشناسی ارشد، دانشگاه تبریز، 110 صفحه.
References
Arai, S. & Yurimoto, H., 1994- Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle–melt interaction products. Economic Geology 89: 1279–1288.
Bağci, U., Parlak, O. &  Höck, V., 2005- Whole rock and mineral chemistry of cumulates from the Kizildag˘ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean. Mineralogical Magazine 69: 39–62.
Beccaluva, L. & Serri, G., 1988- Boninitic and low-Ti subduction-related lavas from intraoceanic arc-backarc systems and low-Ti ophiolites: a reappraisal of their petrogenesis and original tectonic setting. Tectonophysics 146: 291–315.
Beccaluva, L., Ohnenstetter, D. & Ohnenstetter, M., 1979- Geochemical discrimination between ocean-floor and island-arc tholeiites‌application to some ophiolites. Canadian Journal of Earth Sciences 16: 1874–1882.
Bodinier, J. L. & Godard, M. R., 2003- Orogenic, ophiolitic, and abyssal peridotites. In: Carlson, W. (Ed.), Treasure on Geochemistry. The Mantle and Core, Volume 2. Elsevier Ltd., p. 103–170.
Choi, S. H., Shervais, J. W. & Mukasa, S. B., 2008- Supra-subduction and abyssal mantle peridotites of the CoastRange ophiolite, California. Contributions to Mineralogy and Petrology 156: 551–576.
DeBari, S. M. & Coleman, R. G., 1989- Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research 94: 4373–4391.
Desmons, J. & Beccaluva, L., 1983-Mid-Ocean ridge and island-arc affinities in ophiolites from Iran: palaeographic implications. Chem. Geol., 39: 39-63.
Dick, H. J. B. & Bullen, T., 1984- Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas: Contributions to Mineralogy and Petrology 86: 54-76.
Dick, H. J. B., 1989- Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins: Geological Society, London, Special Publications, 42: 71–105.
Dilek, Y., Furnes, H. & Shallo, M., 2008- Geochemistry of the JurassicMirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100: 174–209.
Fujimaki, H., Tatsumoto, M. & Aoki, K., 1984- Partition coefficients ofHf, Zr, and REE between phenocrysts and groundmasses. Journal of Geophysical Research 89 (Supl. B1): 662–672.
Gaetani, G. A. & Grove, T. L., 1998- The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346.
Ghazi, A. M., Hassanipak, A. A., Mahoney, J. J.  & Duncon, R. A., 2004- Geochemical characteristics, 40Ar-39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary Prism, S.E. Iran.
Harper, G. D., 2003- Fe–Ti basalts and propagating-rift tectonics in the Josephine Ophiolite. Geology 115: 771–787.
Hellebrand, E., Snow, J. E., Dick, H. J. B. &  Hofmann, A. W., 2001- Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410: 677–681.
Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, A. W., 2002- Garnet-field melting and later-stage refertilizaiton in ‘residual’ abyssal peridotites from the central Indian Ridge. Journal of Petrology 43: 2305–2338.
Hickey, R. L. & Frey, A. F., 1982- Geochemical characteristiccs of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta 46: 2099–2115.
Hunziker, D., Burg, J. P., Caddick, M., Reusser, E. & Omrani, J., 2010- Blueschists of the Inner Makran accretionary wedg, SE Iran: Petrography, geochemistry and thermobarometry. Geophysical Research Abstracts. vol. 12, EGU2010-1572.
Ishii, T., Robinson, P. T., Maekawa, H. & Fiske, R., 1992- Petrological studies of peridotites from diapiric serpentinite seamounts in The Izu–Ogasawara–Mariana forearc, LEG125. In: Fryer, P., Pearce, J.A., Stokking, L.B. (Eds.), Proceedings of the Ocean Drilling Program. Scientific Results: Ocean Drilling Program, College Station, Texas, 125: 445–485.
Johnson, K. T. M. & Dick, H. J. B., 1992- Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. Journal of Geophysical Research 97: 9219–9241.
Johnson, K. T. M., Dick, H. J. B. & Shimizu, N., 1990- Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research 95: 2661–2678.
Kamenetsky, V., Crawford, A. J. & Meffre, S., 2001- Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655–671.
Kinzler, R. J., 1997- Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research 102: 853–874.
Knipper, A. & Ricou, L. E., 1986- Ophiolites as indicators of the geodynamic evolution of the TethyanOcean. Tectonophysics, 123, P. 213- 40.
Kostopoulos, D. K. & Murton, B. J., 1992- Origin and Distribution of Components in Boninite Genesis: Significance of the OIB Component. In: Parson, L.M., Murton, B.J., Browning, P. (Eds.), Ophiolites and their Modern Oceanic Analogues. Geological Society of London Special Publication, 60. Blackwell, Oxford, p. 133–154.
Leake, B. E., Wooley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorone, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandaino, J. A., Marsch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Guo, Y., 1997- Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist 82: 1019–1037.
McCall, G. J. H., 1985- Area Report. East Iran Project, Area No. 1, Report no. 57.
McCall, G. J. H., 1997- The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Earth Sciences 15: 517-531.
McCall, G. J. H., 2002- A Summary of the Geology of the IranianMakran. In: Clift, P.D., Kroon, D., Gaedicke, C., Craig, J. (Eds.), The Tectonic and Climatic Evolution of the Arabian Sea Region. Geological Society of London Special Publication, 195. Blackwell, Oxford, p. 147–204.
McCall, G. J. H., 2003- A Critiqu of the analogy between Archean and Phanerozoic tectonic based on regional mapping of the Mesozoic-Cenozoic plat Convergent zone in the Makran, Iran.
McKenzie, D. & O'Nions, R. K., 1991- Partial melt distributions from inversion of Rare Earth Element concentrations. Journal of Petrology 32: 1021–1091.
Mehdipour Ghazi, J., Moazzen, M., Rahgoshay, M. & Moghadam, H. S., 2010- Mineral chemical composition and geodynamic significance of peridotites from Nain ophiolite, central Iran. Journal of Geodynamics 49: 261–270.
Meijer, A. & Reagan, M., 1981- Petrology and geochemistry of the island of Sarigan in the Mariana arc: calcalkaline volcanism in an oceanic setting. Contributions to Mineralogy and Petrology 77: 337–354.
Mittwede, S. K. &  Schandle, S., 1992- Rodingites from the southem Appalachian Piedmont, South Carolina, USA. Eur. J. Mineral. 4, 7 -16.
Miyashiro, A., 1973- The Troodos complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224
Monnier, C., Girardeau, J., Maury, R. & Cotten, J., 1995- Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia). Geology 23, 851–854.
Morishita, T., Arai, S. & Tamura, A., 2003- Petrology of an apatite-rich layer in the Finero phlogopite-peridotite, Italian Western Alps; implications for evolution of a metasomatising agent. Lithos 69, 37–49.
Morishita, T., Dilek, Y., Shallo, M., Tamura, A. & Arai, S., 2010- Insight into the uppermost mantle section of a maturing arc: The Eastern Mirdita ophiolite, Albania. (Lithos). doi:10.1016/j.lithos.2010.10.003.
Niu, Y., 2004- Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology 45, 2423–2458.
Ohara, Y., Stern, R., Ishii, T., Yurimoto, H. & Yamazaki, T., 2002- Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin. Contributions to Mineralogy and Petrology 143, 1–18.
Parkinson, I. J. & Pearce, J. A., 1998- Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125) : evidence for mantle melting and melt–mantle interaction in a suprasubduction zone setting. Journal of Petrology 39: 1577–1618.
Parlak, O., Höck, V. & Delaloye, M., 2002- The suprasubduction zone Pozanti-Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65: 205–224.
Paulick, H., Bach, W., Godard, M., De Hoog, J. C. M., Suhr, G. & Harvey, J., 2006- Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209) : implications for fluid/rock interaction in slow spreading environments. Chemical Geology 234, 179–210.
Pearce J. A. & Parkinson, I. J., 1993- Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Pritchard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc Lond Spec Publ 76: 373–403.
Pearce, J. A. & Norry, M. J., 1979- Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 33–47.
Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J. &  Leat, P. T., 2000- Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contribution to Mineralogy and Petrology 139: 36–53.
Pearce, J. A., Lippard, S. S. & Roberts, S., 1984- Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar, B.P., Howells, M.F. (Eds.), MarginalBasin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and AncientMarginalBasins: Geological Society of London Special Publication 16: 77–94.
Pearce, J. A., Van der Laan, S. R., Arculus, R. J., Murton, B. J., Ishii, T., Parkinson, I. J. & Peate, D. W., 1992- Boninite and harzburgite from ODP Leg 125 (Bonin–Mariana forearc): a Case Study of Magma Genesis During the Initial Stages of Subduction. In: Freyer, P., Stokking, L.B., et al. (Eds.), Proceedings of the Ocean Drilling Program: Scientific Results 125: 623–659.
Proenza, J., 1999- Uvarovite in Podiform Chromitite: The Moa-Baracoa Ophiolitic Massif, Cuba. The Canadian Mineralogist 37: 679–690.
Reagan, M. K., Ishizuka, O., Stern, R. J., Kelley, K. A., Ohara, Y., Blichert-Toft, J., Bloomer, S. H., Cash, J., Fryer, P., Hanan, B. B., Hickey-Vargas, R., Ishii, T., Kimura, J. I., Peater, D. W., Rowe, M. C. & Woods, M., 2010- Fore-arc basalts and subduciton initiation in the Izu–Bonin– Mariana system. Geochemistry Geophysics Geosystems 11, Q03X12. doi:10.1029/ 2009GC002871.
Ricou, L. E., 1971- Le croissant ophiolitique péri-arabe. Une ceinture de nappes mises en place au Crétacé supérieur. Revue de Géographie physique et Géologie dynamique, XIII, Paris, 327–350.
Robinson, P. T., Melson, W. G., O’Hearn, T. & Schmincke, H. U., 1983- Volcanic glass compositions of the Troodos ophiolite, Cyprus. Geology 11:400–404
Saccani, E., Beccaluva, L., Coltorti, M. & Siena, F., 2004- Petrogenesis and tectonomagmatic significance of the Albanide–Hellenide Subpelagonian ophiolites. Ofioliti 29: 77–95.
Saccani, E., Photiades, A. & Beccaluva, L., 2008- Petrogenesis and tectonic significance of IAT magma-types in the Hellenide ophiolites as deduced from the Rhodiani ophiolites (Pelagonian zone, Greece). Lithos 104, 71–84.
Saccani, E., Delavari, M., Beccaluva, L., Amini, S., 2010- Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran) : Implication for the evolution of the SistanOcean . Lithos 117, 209-228.
Sengor, A. M. C., Altiner, D., Cin, A., Ustaomer, T. & Hsu, K. J., 1988- The Tethyside orogenic collage. In: Audley-Charles, M.G., Hallam, A. (Eds.), Gondwana and Tethys. Geological Society and OxfordUniversity Press, Special Publication of the Geological Society No. 37: 119–181.
Seyler, M., Cannat, M. & Mével, C., 2003- Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems 4, 9101. doi:10.1029/2002GC000305.
Seyler, M., Loarnd, J. P., Dick, H. J. B. &  Drouin, M., 2007- Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N: ODP Hole 1274A. Contributions to Mineralogy and Petrology 153: 303–319.
Shaker Ardakani, A. R., Arvin, M., Oberhansli, R., Mocek, B. & Moeinzadeh, S. H., 2009- Morphology and petrogenesis of pillow lavas from the Ganj ophiolitic complex, southeastern Kerman, Iran. Journal of Sciences, Islamic Republic of Iran 20(2): 139–151.
Shervais, J. W., 1982- Ti–V plots and the petrogenesis of modern ophiolitic lavas. Earth and Planetary Science Letters 59: 101–118.
Shervais, J. W., 2001- Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry Geophyiscs Geosystems 2 2000GC000080, ISSN: 1525-2027.
Sun, S. S. & McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in Ocean Basins. Geological Society of London Special Publications 42: 313–345.
Tamura, A., Arai, S., Ishimaru, S. & Andal, E. S., 2008- Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macroscale melt penetrations into peridotites. Contributions to Mineralogy and Petrology 155: 491–509.
Workman, R. K. &  Hart, S. R., 2005- Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231: 53–72.
Zanetti, A., D'Antonio, M., Spadea, P., Raffone, N., Vannucci, R. & Brugeir, O., 2006- Petrogenesis of mantle peridotites from the Izu–Bonin–Mariana (IBM) forearc. Ofioliti 31: 189–206.