زمین‌‌دماسنجی و زمین‌فشارسنجی سنگ‌های دگرگونی منطقه ده‌نو (شمال‌باختر مشهد)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، گروه زمین شناسی، تهران، ایران

2 دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

3 مؤسسه مطالعه تحولات کره زمین، بخش علوم و فناوری زمین دریا، یوکوسوکا، ژاپن

چکیده

داوران
سنگ‌های دگرگونی منطقه ده‌نو به‌طور غالب شامل شیست‌های ریزدانه خاکستری تا سیاه‌‌رنگ است. گارنت‌شیست‌ها (نسبت به گارنت‌کلریتویید‌شیست‌ها)‌ در فاصله نزدیک‌تری نسبت به توده تونالیتی قرار گرفته‌اند و در فاصله مرزی بین این شیست‌ها با حاشیه توده تونالیتی ده‌نو، باریکه‌ای از هورنفلس‌های استارولیت و آندالوزیت‌دار دیده می‌شود. گارنت‌شیست و گارنت‌کلریتویید‌شیست‌های منطقه ده‌نو از نظر کانی‌شناسی شامل کوارتز، بیوتیت، مسکوویت، گارنت، کلریت، کلریتویید، تورمالین و ایلمنیت است. نتایج زمین‌دمافشارسنجی نشان می‌دهد که هورنفلس‌ (oC 550، kbar 3/4) و گارنت کلریتویید‌شیست‌ (oC 486-497) در شرایط تعادلی پایین‌تری نسبت به گارنت شیست‌ (oC 569، kbar 3/5) تشکیل شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Geothermometry and Geobarometry of Metamorphic Rocks of Dehnow (Northwest of Mashhad)

نویسندگان [English]

  • Ramin Samadi 1
  • M. V. Valizadeh 2
  • H. Mirnejad 2
  • H. Kawabata 3
1 Dept. of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Faculty of Science, College of Geology, University of Tehran, Tehran, Iran
3 Institute for Research on Earth Evolutions (IFREE), Japan Agency for Marine -Earth Science and Technology (JAMSTEC), Yokosuka, Japan
چکیده [English]

Metamorphic rocks of Dehnow area mainly consist of gray to black fine-grained schists. Garnet schists are closer to the tonalitic body than the garnet chloritoid schists. There is a thin layer of staurolite and andalusite bearing hornfels between these schists and the Dehnow tonalitic body. Garnet schists and garnet chloritoid schists of Dehnow area are mineralogically comprised of quartz, biotite, muscovite, garnet, chlorite, chloritoid, tourmaline and ilmenite. Geothermobarometry results indicate that hornfels (550oC, 4.3 kbar) and garnet chloritoid schist (486-497oC) have formed in lower equilibrium condition in comparison with garnet schist (569oC, 5.3 kbar).
 

کلیدواژه‌ها [English]

  • Schist
  • Geothermometry
  • Geobarometry
  • Dehnow
  • Mashhad

اسماعیلی، د.، کنعانیان، ع.، ولی‌زاده، م. و.، 1382-  پلی‌متامورفیسم در اطراف گرانیتوییدهای جنوب مشهد، دومین همایش انجمن زمین‌شناسی ایران.

بهاری‌فر، ع.ا.، هاتفی، ر.، مظاهری، ا.، معین‌وزیری، ح.، 1384-  دگرشکلی و ارتباط آن با تبلور کانی‌های دگرگونی در منطقه ده‌نو (مشهد- خراسان). نهمین همایش انجمن زمین‌شناسی ایران.

پورلطیفی، ا.، 1381-  نقشه زمین‌شناسی ورقه 1:100000 طرقبه، سازمان زمین‌شناسی ایران.

شیردشت‌زاده، ن.، صمدی، ر.، 1389-  آشنایی با روش‌های زمین دماسنجی و زمین فشارسنجی، اصفهان، 99 صفحه.

صمدی، ر.، 1387- بررسی منشأ مگاکریست‌های گارنت موجود در تونالیت ده‌نو، شمال‌غرب مشهد، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، 179 صفحه.

صمدی، ر.، شیردشت‌زاده، ن.، 1389- گارنت (مفاهیم کانی‌شناسی، خاستگاه و دمافشارسنجی)، مشهد، 106 صفحه.

هاتفی، ر.، 1382-  مطالعه سنگ‌های دگرگونی ناحیه‌ای و توده‌های نفوذی منطقه ده‌نو (شمال‌غرب مشهد)، پایان‌نامه کارشناسی‌ارشد، دانشگاه تربیت معلم تهران، 112 صفحه.

همام، م.، قائمی، ف.، 1387-  ساز و کار تشکیل فیبرولیت در هاله دگرگونی گرانیت مشهد، فصل‌نامه بلورشناسی و کانی شناسی ایران، سال شانزدهم، شماره 1، صفحه 159- 168.

 

 

 

References

Abrecht, J. & Hewitt, D. A., 1988- Experimental evidence on the substitution of Ti in biotite. American Mineralogist, 73: 1275-1284.

Alavi, M., 1991- Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulltin, 103: 983-992.

Alberti, A. & Nicoletti, M. & Petrucciani, C., 1973- K/Ar ages of micas of Mashhad granites (Khorasan, North-Eastern Iran). Period, Mineralogy, 42: 483-493.

Althaus, E., 1967- The triple point andaluzite-sillimanite-kyanite: An experimental and petrologic study. Contributions to Mineralogy and Petrology, 16: 29-44.

Arima, M. & Edgar, A. D., 1981- Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contributions to Mineralogy and Petrology, 77: 288-295.

Bucher, K. & Frey, M., 2002- Petrogenesis of Metamorphic Rocks. Berlin, Heidelberg, New York, Springer-Verlag, 7th edition, 341 p.

Dasgupta, S., Sengupta, P., Guha, D. & Fukuoka, M., 1991- A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites. Contributions to Mineralogy and Petrology, 109: 130-137.

Deer, W. A., Howie, R. A. & Zussman, J., 1962- Rock Forming Minerals. Volume 3, Sheet Silicates. Wiley, 270 p.

Deer, W. A., Howie, R. A. & Zussman, J., 1997- Rock Forming Minerals. Volume 2B. Double-Chain Silicates. Geological Society, London, 2nd edition, 764 p.

Deer, W. A., Howie, R. A. & Zussman, J., 1992- An Introduction to the Rock forming Minerals. Second Editions, Longman, London, 696 p.

Droop, G. T. R., 1987- A general equation for estimating Fe3+ vacancy-ordering and Fe-oxidation. Geological Society of America, 31(7): 170.

Dymek, R. F., 1983- Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Green land. American Mineralogist, 68: 880-899.

Engel, A. E. J. & Engel, C. G., 1960- Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains. New York, Part 2. Mineralogy Bulletin of the Geological Society of America, 71: 1-58.

Ferry, J. M. & Spear, F. S., 1978- Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66: 113-117.

Forbes, W. C. & Flower, M. F. J., 1974- Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O2(OH)4: A refractory phase in the upper mantle. Earth and Planetary Science Letters, 22: 60 - 66.

Frost, J., 1962- Metamorphic grade and iron-magnesium distribution between coexisting garnet-biotite and garnet-hornblende. Geological Magazine, 99: 427-438.

Green, T. H. & Hellman, P. L., 1982- Fe-Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos, 15: 253-266.

Harangi, S. Z., Downes, H., Kosa, L., Szabo, C. S., Thirlwall, M. F., Mason, P. R. D. & Mattey, D., 2001- Almandine Garnet in Calc-Alkaline Volcanic Rocks of the PannonianBasin (Eastern-Central Europe): Geochemistry, Petrogenesis and Geodynamic Implications. Journal of Petrology, 42(10): 1813-1843.

Henry, D. J., Guidiotti, C.V. & Thomson, J. A., 2005- The Ti saturation surface for low to medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms. American Mineralogist, 90: 316-328.

Henry, D. J. & Guidotti, C. V., 2002- Ti in biotite from metapelitic rocks: Temperature effects, crystallochemical controls and petrologic applications. American Mineralogist, 87: 375-382.

Hodges, K. V. & Spear, F. S., 1982- Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67(11/12): 1118-1134.

Holdaway, M. J. & Mukhopadhyay, B., 1993- Are-evaluation of the stability relations of andalusite: thermochemical data and phase diagram for the alumino silicates. American Mineralogist, 78: 298-315.

Holdaway, M. J., 1971- Stability of andalusite and the aluminum silicate phase diagram. American Journal of Science, 271: 97-131

Holdaway, M. J., 2000- Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85: 881-892.

Holdaway, M. J., 2001- Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86: 1117-1129.

Hynes, A. & Forest, R. C., 1988- Empirical garnet-muscovite geothermometry in low-grade metapelites, SelwynRange (Canadian Rockies). Journal of Metamorphic Geology, 6: 297- 309.

Karimpour, M. H., Stern, C. R. & Farmer, L., 2010-  Zircon U-Pb geochronology, Sr-Nd isotope analyses, and petrogenetic study of the Dehnow diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran. Journal of Asian Earth Sciences, 37: 384-393.

Kretz, R., 1983- Symbols for rock forming minerals. American Mineralogist, 68(1/2): 277-279.

Krogh, E. J. & Raheim, A., 1978- Temperature and pressure dependence of Fe-Mg partitioning between garnet and phengite, with particular references to eclogites. Contributions to Mineralogy and Petrology, 66(1): 75-80.

Kwak, T. A. P., 1968- Ti in biotite and muscovite as an indication of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario. Geochimica et Cosmochimica Acta, 32: 1222-1229.

Lammerer, B., Langheinrch, G. & Danai, M., 1983- The tectonic evolution of Binaloud mountains. Geodynamic project (Geotraverse) in Iran. Geological Survey of Iran, Report no. 51: 519 p.

Majidi, B., 1978- Etude Petrostructurale de la ergion de Mashhad (Iran). These docteur. Ingeniever, Univ. Sci. ct. Med. de Grenoble, France, 277 p.

Oganov, A. R., Price, G. D. & Brodholt, J. P., 2001- Theoretical investigation of metastable Al2SiO5 polymorphs. Acta Crystallography, A57: 548-557.

Patiño, D. A. E., 1993- Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences form biotite stability. Chemical Geology, 108: 133-162.

Putnis, A. & John, T., 2010- Replacement Processes in the Earth’s Crust. Elements, 6: 159-164.

Pattison, D. R. M., 1992- Stability of andalusite and sillimanite and the Al2SiO5 triple point: Constraints from the Ballachulish aureole, Scotland. Journal of Geology, 100: 423 446.

Perchuk, L. L. & Lavrent’eva, I. V., 1983- Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. Pp. 199-239 in: Kinetics and Equilibrium in Mineral Reactions (S.K. Saxena, editor). Advances in Physical Geochemistry, 3, Springer, New York.

Robert, J. L., 1976- Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17: 213-227.

Salje, E. & Werneke, C., 1982- The phase equilibrium between sillimanite and andalusite as determined from lattice vibrations. Contributions to Mineralogy and Petrology, 79: 56-67.

Spear, F. S., 1995- Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America, 799 p.

Spear, F. S., Selverstone, J., Hickmott, D., Crowley, P. & Hodges, K.V., 1984- P-T paths from garnet zoning: A new technique for deciphering tectonic processes in crystalline terranes. Geology, 12: 87-90.

Thomson, A. B., 1976- Mineral reactions in pelitic rocks. II. Calculation of some P-T-X (Fe-Mg) phase relations. American Journal of Science, 276: 425-454.

Tronnes, R. G., Edgar, A. D. & Arima, M., 1985- A high pressure-high temperature study of TiO2 solubility in Mg-rich phlogopite: Implications to phlogopite chemistry. Geochimica et Cosmochimica Acta, 49: 2323-2329.

Wu, C. M. & Cheng, B. H., 2006- Valid garnet-biotite (GB) geothermometry and garnet-aluminum silicate-plagioclase-quartz (GASP) geobarometry in metapelitic rocks. Lithos, 89: 1 - 23.

Wu, C. M., Wang, X. S., Yang, C. H., Geng, Y. S. & Liu, F. L., 2002- Empirical garnet-muscovite geothermometry in metapelites. Lithos, 62: 1-13.

Wu, C. M., Zhang, J. & Ren, L. D., 2004- Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium to high grade metapelites. Journal of Petrology, 45: 1907-1921.

Wu, C. M. & Zhao, G. C., 2006- Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages. Journal of Petrology, 47: 2357-2368.

Wu, C. M. & Zhao, G. C., 2007- The Metapelitic Garnet-Biotite-Muscovite-Aluminosilicate-Quartz (GBMAQ) Geobarometer. Lithos, 97: 365-372.