پراکندگی رنیوم و عوامل کنترل‌کننده آن در انواع مولیبدنیت کانسارهای مس پورفیری کرمان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه گلستان، گرگان، ایران.

2 کارشناس ارشد، گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه گلستان، گرگان، ایران

3 کارشناس ارشد، امور اکتشافات و مهندسی توسعه، مجتمع مس سرچشمه، شرکت ملی صنایع مس ایران، تهران، ایران.

4 کارشناس، امور تحقیق و توسعه، مجتمع مس سرچشمه، شرکت ملی صنایع مس ایران، تهران، ایران.

5 دانشیار، گروه زمین‌شناسی، کالج جانیاتا، هانتینگدان، پنسیلوانیا، ایالات متحده آمریکا.

چکیده

در پژوهش حاضر، غلظت رنیوم در 30 نمونه مولیبدنیت هگزاگونال (2H) و تریگونال (3R) متعلق به رگچه­های مراحل مختلف کانی­سازی ژرف­زاد از 7 کانسار پورفیری مس و مولیبدن کرمان تعیین شد. غلظت رنیوم در مولیبدنیت­های این کانسارها از 49 تا 1449 گرم در تن متغیر بود که در محدوده غلظت رنیوم در کانسارهای پورفیری مس و مولیبدن دیگر مناطق جهان است. مولیبدنیت نوع 3R (میانگین حدود 563 گرم در تن) عموماً غلظت بالاتری از رنیوم را نسبت به مولیبدنیت­های 2H (میانگین 479 گرم در تن) نشان داده­ است. تغییرات غلظت رنیوم در انواع مولیبدنیت­های نهشته شده در طی مراحل مختلف کانی­سازی ژرف­زاد، غلظت بیشتر رنیوم در مولیبدنیت نهشته شده با رگچه­های مراحل انتقالی و پایانی کانی­سازی (نوع B و نوع D) نسبت به مولیبدنیت رگچه­های مراحل اولیه (نوع A) را نشان می­دهد. این پراکندگی پیشنهاد می­کند که رنیوم با سیال‌های گرمابی اسیدی­تر و سردتر در مراحل میانی تا پایانی تکامل سامانه پورفیری در دگرسانی سیلیسی، سریسیتی و رسی بیشتر تمرکز یافته است. مطالعه حاضر نشان داد که مولیبدنیت­های با مقدار زیاد رنیوم با کانسارهای مس پورفیریی همراه هستند که با عیار میانگین کم از مولیبدن، مقادیر محدود مولیبدنیت و توده نفوذی مولد، حاصل دخالت بیشتر ماگماهای مشتق از جبه نسبت به مواد پوسته­ای مشخص می­شوند. افزون بر ویژگی­های یادشده، فراوانی پلی­مورف 3R مولیبدنیت در کانسارها، ترکیب کمتر تفریق یافته و کلسیمی­تر توده­های نفوذی مولد کانسارها با مقادیر کمتر رادیوژنی نسبت­های ایزوتوپی استرانسیم و سرب آنها و همچنین رخداد فرایندهای تأخیری دگرسانی و کانی­سازی گرمابی کم‌دما و اسیدی در تاریخچه شکل­گیری و تکامل کانسارها از ویژگی­های کانسارهای پورفیری مس و مولیبدن با محتوای زیاد از رنیوم هستند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Rhenium Distribution and Its Controlling Factors in Molybdenite Types of Kerman Porphyry Copper Deposits

نویسندگان [English]

  • B. Shafiei 1
  • S. Lali faz 2
  • Gh. H. Shamanian 1
  • H. Taghizadeh 3
  • M. Hossaini 4
  • R. Mathur 5
1 Assistant Professor, Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran.
2 M.Sc., Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran.
3 M.Sc., Senior expert, Exploration and Development Engineering Affairs, SarCheshmeh Copper Complex, National Iranian Copper Industries Co. Tehran, Iran.
4 Expert of Research and Development Affairs, SarCheshmeh Copper Complex, National Iranian Copper Industries Co. Tehran, Iran.
5 Associate Professor, Department of Geology, Juniata College, Huntingdon, Pennsylvania, USA
چکیده [English]

  In present study, Re concentration determined in 30 hexagonal (2H) and trigonal (3R) molybdenite samples belong to veinlets of different stages of hypogene mineralization from 7 porphyry Cu and Mo deposits from Kerman region. Re concentration in molybdenites of these ore deposits varied from 49 g/t to 1449 g/t which are in Re concentration range of other porphyry Cu and Mo deposits around the world. In general, 3R molybdenites show the higher Re concentration (average ~ 563 g/t) than those of 2H molybdenites (average ~ 479 g/t). Variations of Re concentration in molybdenite types deposited during different stages of hypogene mineralization indicate more concentration of Re in molybdenites precipitated with transitional (B-type veins) and late (D-type veins) stages of mineralization than those of early stage veinlets (A-type veins).  This distribution suggest that Re with more acidic and cooler hydrothermal fluids at the transitional and the late stages of porphyry system evolution is more concentrated with silicification, sericitization, and argillization alterations. Present study indicated that molybdenites with high Re content are associated with porphyry copper deposits which are characterized by low average grade of Mo, limited contents of molybdenite, and also their productive intrusive is resulted from significant contribution of mantle-derived magmas respect to crustal materials.In addition to abovementioned signatures, frequency of 3R poly-type of molybdenite in ore deposits, less fractionated and more calcic composition of productive intrusive of ore deposits with their less radiogenic of Sr and Pb isotope ratios, as well as occurrence of late stages of acidic and low temperature hydrothermal alteration and mineralization processes in formation and evolution history of ore deposits are signatures of porphyry copper and molybdenum deposits with high Re contents.

کلیدواژه‌ها [English]

  • Rhenium
  • Molybdenite
  • Cu porphyry
  • Kerman
سلطانی­نژاد، س.، 1389- مطالعه ­توزیع­ و ­رفتار ­ژئوشیمیایی ­­­­­­مولیبدن­ درکانسار­ پورفیری­ تحت ­اکتشاف نوچون (جنوب معدن  مس سرچشمه رفسنجان) پایان­نامه کارشناسی ارشد، دانشگاه گلستان،  112 ص.
سلطانی­نژاد، س.، شفیعی، ب. و اصفهانی­پور، ر.، 1389- رفتار زمین‌شیمیایی مولیبدن، مس و طلا در کانسار پورفیری نوچون، رفسنجان، نخستین همایش انجمن زمین­شناسی اقتصادی ایران.
سلطانی­نژاد، س.، شفیعی، ب. و تقی­زاده، ح.، 1389- دگرسانی و کانی­سازی در کانسار مولیبدن- مس پورفیری نوچون، رفسنجان، هیجدهمین همایش بلور شناسی و کانی‌شناسی ایران.
شفیعی، ب.، شهاب­پور، ج. و سعدلو، م.، 1380- ویژگی­های ژئوشیمیایی، سرشت و خاستگاه طلا و نقره ژرف­زاد در کانسار مس پورفیری سرچشمه کرمان.                      فصلنامه علمی- پژوهشی علوم‌زمین، سال هشتم، شماره 33-34، صفحات 34-49.
صالحیان، م. و قادری، م.، 1389- تکامل هیدروترمالی کانسار مس پورفیری درآلو، جنوب کرمان، نخستین همایش انجمن زمین­شناسی اقتصادی ایران.
قاسمی، ق.، علیرضایی، س. و ایرانمنش، م. ر.، 1389- ویژگی­های زمین­شناسی و دگرسانی در محدوده اکتشافی کرور، جبال­بارز استان کرمان، چهاردهمین همایش انجمن زمین­شناسی ایران و بیست و هشتمین گردهمایی علوم زمین.
 
References
Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F., 2005- Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94: 401-419.
Ayres, D., 1974- Distribution and occurrence of some naturally- occurring polytipes of molybdenite in Australia and Papua New Guinea. Journal of Geological Society of Australia 21:273-278.
Berberian, F., Muir, I. D., Pankhurst, R. J. & Berberian, M., 1982- Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran. Geological Society of London 139:604-614.
Berberian, M. & King, G. C. P., 1981- Toward a paleogeography and tectonic evolution of Iran. Canadian journal of Earth Sciences 18: 210-265.
Bernard, A., Symonds, R. B. & Rose, W. I. JR., 1990- Volatile transport and deposition of Mo, W, and Re in high temperature magmatic fluids. Applied Geochemistry 5:317-326.
Berzina, A. N., Sotnikov, V. I., Economou-Eliopoulos, M. & Eliopoulos,  D. G, 2005- Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia )Siberia( and Mongolia. Ore Geology Reviews 26: 91-113.
Candela, P. A. & Holland, H. D., 1986- A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type deposits. Economic Geology 81:1-19.
Candela, P. A. & Holland, H. D., 1984- The partition of Copper and Molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta 48:373-380.
Demitrijevic, M. D., 1973- Geology of Kerman region. Geological Survey of Iran Report 52. 334 pp.
Derakhshani, R. & Abdolzadeh, M., 2009- Mass change calculations during hydrothermal alteration/mineralization in the porphyry copper deposit of Darrehzar, Iran. Research Journal of Environmental Sciences 3(1): 41-51.
Dercourt, J., Zonenshain, L., Ricou, L. E., Kasmin, G., Lepichon, X., Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier, C., Pechersky, D. H., Boulin, J. P., Sibuet, J. C., Savostin, L. A., Sorokhtin, O., Westphal, M., Bazhenove, M. L., Lauer, J. P., Biju-Duval, B., 1986- Geological evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123: 241-315.
Economou-Eliopoulos, M. & Eliopoulos, D. G., 1996- Distribution of rhenium (Re) in molybdenites and Mo-bearing minerals of Greece and its economic significance. Final Report, University of Athens, 30 pp (in Greek with English abstract).
Etminan, H., 1977- Le porphyre cuprifere de Sar Cheshmeh (Iran), role des phases fluids dans les mechanism de alteration et de mineralization. Sci. Terr. Mem., 34, 78p.
Filimonova, L. Y., Zhukov, N. M. & Malyavka, A. G., 1985- Genetic aspects of polytypism and rhenium contents of molybdenite in porphyry copper deposits. Geochemistry International 22:74-79.
Fleischer, M., 1960- The geochemistry of rhenium – addendum. Economic Geology 55:607-609.
Frondel, J. W. & Wickman, F. E., 1970- Molybdenite polytypes in theory and occurrence. II. Some naturally- occurring polytypes of molybdenite. American mineralogist55: 1857-1875.
Giles, D. L. & Schilling, J. H., 1972- Variation in rhenium content of molybdenite .In:24th International Geological Congress, Montreal Proceedings 10: 145-152.
Guan, X., Shou, Y., Xiao, J., Lian, S. &  Li, J., 1988- A new type of tin deposit- the Yinyan porphyry tin deposit in China, in Hutchison C.S., ed., Geology of Tin Deposits in Asia and the Pacific. Springer Verlag, Berlin, New York, 487- 494.
Hassanzadeh, J., 1993- Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Kerman province). Unpublished Ph-D. Thesis, University of Colifornia, Los Angeles, 204 p.
Hezarkhani, A., 2006- Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu-Mo deposit, Iran: Evidence from fluid inclusions. Journal of Asian Sciences 28: 409-422.
Heinrich, C. A., 2005- The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineralium Deposita 39: 864-889.
Ishihara, S., 1988- Rhenium contents of molybdenites in granitoid-series rocks in Japan. Economic Geology 83: 1047-1051.
Ivanov, V. V. & Yushko-Zakharova, O. E., 1989- Rhenium. In: Ivanov V.V., et al., (Eds.), Siderophile and chalcophile rare metals geological directory. Nedra, Moscow, pp. 425-459 (in Russian).
Kesler, S. E., 2000- Mineral resources and environmental and economic influences.
Kooiman, G. J. A., McLeod, M. J. & Sinclair, W. D., 1986-Porphyry tungsten- molybdenum ore bodies, polymetallic veins and replacement bodies and tin- bearing greisen zones in the Fire Tower Zone, Mount Pleasant, New Brunswick. Economic Geology, 81: 1356-1373.
Mao, J., Zhang, Z., Zhang, Z. & Du, A., 1999- Re-Os isotopic dating of molybdenites in the Xiaoliugou W-(Mo) deposit in the northern QulianMountains and its geological significance. Geochimica et Cosmochimica Acta 63: 1815-1818.
McCandless, T. E., Ruiz, J. & Campbell, A. R., 1993- Rhe.nium behavior in molybdenite in hypogene and near-surface environments: implications for Re–Os geochronology. Geochimica et Cosmochimica Acta 57:889-905.
McClay, K. R., Whitehouse, P. S., Dooley, T. & Richards, M., 2004- 3D evolution of fold and thrust belts formed by oblique convergence. Marine Geology 21: 857-877.
Melfos, V., Voudouris, P., Arikas, K. & Vavelidis, M., 2001- Rhenium-rich molybdenites in Thracian porphyry Cu+Mo occurrences, NE Greece. Bulletin of the Geological Society of Greece 34:1015-1022 (in Greek with English abstract).
Mohajjel, M., Fergusson, C. L. & Sahandi, M. R., 2003- Cretaceous-Tertiary convergence and continental collision, Sanandaj-sirjan zone, western Iran. Journal of Asian Earth Sciences 21: 397-412.
Mutschler, F. E., Wright, E. G., Ludington, S.  & Abbott, J. T., 1981- Granite molybdenite system. Economic Geology 76: 874- 897.
Nedimovic, R., 1973- Exploration for ore deposits in Kerman Region, Geological Survey of Iran, Rep 53: 1-247.
Newberry, R. J.  J., 1979a- Polytypism in molybdenite: A non-equilibrium impurity-induced phenomenon. American mineralogist 64:758-767.
Newberry, R. J. J., 1979b-Polytypism in molybdenite: Relationships between polytypism, ore deposition-alteration stages and rhenium contents. American mineralogist 64: 768-775.
Popov, V. S., 1977- Geology and genesis of copper and molybdenum porphyry deposits. Nauka, Moscow. 203 pp (in Russian).
Richards, J. P., 2003- Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology 98: 1515-1533.
Ricou, L. E., 1994- Tethys reconstructed: plates continental fragments and their boundaries since 260 Ma from Central America to south-eastern Asia. Geodinamica Acta 7: 169-218.
Ruiz, J. & Mathure, R., 2000- Metallogenesis in continental margins: Re-Os evidence from porphyry copper deposits in Chile. Reviews in Economic Geology12: 59-72.
Shafiei, B. & Shahabpour, J., 2008- Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. Journal of Sciences 19(3): 247-260.
Shafiei, B., 2010- Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications. Ore Geology Reviews 38: 27-36.
Shafiei, B., Haschke, M. & Shahabpour, J., 2009- Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita 44: 265-283.
Shahabpour, J. & Kramers, J. D., 1987- Lead isotope data from the Sar Cheshmeh porphyry copper deposit, Kerman, Iran. Mineralium Deposita 22: 278-281.
Stein, H. J., Markey, R. J. & Morgan, J. W., 1997- Highly precies and accurate Re-Os ages for molybdenite from the east Qinling molybdenum belt, Shaanxi province, China. Economic Geology 92: 827-835.
Stein, H. J., Markey, R. J., Morgan, J. W., Hannah, J. L. &  Schersten, A., 2001- The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova 13:479-486.
Stein, H. J., Morgan, J. W. & Schersten, A., 2000- Re- Os dating of low- level highly- radiogenic (LLHR) sulfides: the Harnas gold deposit, southwest Sweden records continental scale tectonic events. Economic Geology 95: 1657-1671.
Suzuki, K., Shimizu, H. & Masuda, A., 1996- Re-Os dating of molybdenites from ore deposits in Japan: implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta 60: 3151-3159.
Taghipour, N., Aftabi, A. & Mathur, R., 2008- Geology and Re-Os geochronology of mineralization of the Miduk porphyry copper deposit, Iran. Resource Geology 58(2): 143-160.
Tarkian, M., Housley, R. M., Volborth, A., Greis, O. & Moh, G. H., 1991- Unnamed Re-Mo-Cu sulfide from the Stillwater Complex, and crystal chemistry of its synthetic equivalent spinel type (Cu,Fe)(Re,Mo)4S8. European Journal of Mineralogy 3: 977-982.
Terada, K., Osaki, S., Ishihara, S. & Kiba, T., 1971- Distribution of rhenium in molybdenites from Japan. Geochemical Journal4: 123-141.
Todorov, T. & Staikov, M., 1985- Rhenium content in molybdenite from ore mineralizations in Bulgaria. Geological Balcanica 15(6): 45-58.
Watanabe, M. & Soeda, A., 1981- Distribution of poly-type contents of molybdenites from Japan and possible controlling factor in polytypism. Neues. Jahrb. Mineral 141:258-279.
Waterman, G. C. &  Hamilton, R. L., 1975- The Sar Cheshmeh porphyry copper deposit. Economic Geology 70: 568-576.
White, W. H., Bookstrom, A. A., Kamilli, R. J., Ganster, M. W., Smith, R. P., Ranta, D. E. & Steininger,  R. C., 1981- Character and origin of Climax- Type molybdenum deposits. Economic Geology 75th Anniversary  270-316.
Williams-Jones, A. E. & Heinrich, C. A., 2005- Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology 100: 1287-1310.
Xiong, Y. & Wood, S., 1999- Experimental determination of the solubility of ReO2 and dominant oxidation stage in hydrothermal solutions. Chemical Geology 158: 245-256.
Xiong, Y. & Wood, S., 2001- Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200 °C) in light of experimental studies. Economic Geology 96: 1429-1444.
 Xiong, Y. & Wood, S., 2002- Experimental determination of the hydrothermal solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions. Geochemical Transactions 3: 1-10.