ژئوشیمی سازند آسماری در مقاطع سطح الارضی تنگ سپو و تنگ بن در ناحیه استان کهگیلویه و بویراحمد

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مطالعات ژئوشیمی سازند آسماری در دو برش چینه‌شناسی از سازند آسماری واقع در تنگ سپو در حوالی شهر دهدشت (استان کهگیلویه و بویراحمد) و تنگ بن نزدیک به شهر بهبهان (استان خوزستان) به ترتیب با ستبراهای 260 و 214 متر، به همراه بخش‌هایی از رأس سازند پابده بررسی شد. در منطقه مورد مطالعه، نهشته‌های کربناتی سازند آسماری با سن الیگوسن بالایی Oligocene ) (Late و میوسن زیرین Miocene) (Early ، بین سازند پابده در زیر و سازند گچساران در بالا نهشته شده است. بر اساس مطالعات ایزوتوپی اکسیژن و کربن و تجزیه عنصری (عناصر فرعی و اصلی)، سازند آسماری بیشتر، تحت تأثیر دیاژنز جوی (meteoric) قرار گرفته است و روند J وارون (inverted-J trend) حاکی از تأثیر این نوع دیاژنز است. همچنین سامانه دیاژنتیکی از نوع بسته تا نیمه بسته، برآورد شده است. مطالعات ژئوشیمیائی حاکی از این است که ترکیب کانی‌شناسی اولیه سازند آسماری آراگونیتی است. بر اساس این تغییرات، مرز بین سازند پابده و سازند آسماری بر اساس مطالعات ایزوتوپ اکسیژن و کربن قابل تشخیص است. مقادیر ایزوتوپ اکسیژن و کربن برای سازند پابده، بیشتر  منفی و برای سازند آسماری  مثبت تا منفی است. افزون بر این، مقادیر عنصرSr  در سازند پابده بیشتر از سازند آسماری است. تغییرات ایزوتوپی و عنصری بین شاتین (Chattian) و آکویتانین و بین آکویتانین (Aquitanian) و بوردیگالین (Burdigalian) به‌نسبت روشن و مشخص است.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry of the Asmari Formation at the Tang-e-Sapou and Tang-e-Ban Outcrop Sections, Kohgiluyeh va Bouyer Ahmad Province

نویسندگان [English]

  • Z.K. Mossadegh
  • M.H. Adabi
  • A. Sadeghi
Department of Geology, Science Faculty, Shahid Beheshti University, Tehran, Iran
چکیده [English]

We studied the geochemistry of the Asmari Formation in two outcrop sections: Tang-e-Sapou a 260 m section near Dehdasht City (Kohgiluyeh va Bouyer Ahmad Province) and Tang-e-Ban a 214 m section near Behbahan City (Khozestan Province). Sampling included the complete Asmari Formation and the top of the Pabdeh Formation. The Late Oligocene to Early Miocene Asmari Formation lies above the Pabdeh Formation and is overlain by the Gachsaran Formation. Elemental geochemistry (Fe, Mg, Na, Sr, Mn, Ca), and Oxygen and Carbon isotope analyses indicate that meteoric diagenesis affected carbonates of the Asmari Formation. The δ18O/δ13C data plots in an inverted J-trend suggesting that meteoric diagensis occurred in a closed to semi-closed system. The geochemistry also suggests that the original mineralogy was Aragonite. The boundary between the Pabdeh and Asmari Formations can be recognized by changes in the δ 18O and δ 13C. In the Pabdeh Formation the δ 18O and δ 13C values are mostly negative, but in the Asmari Formation values range from positive to negative. Strontium is much higher in the Pabdeh Formation than in the Asmari Formation. Changes in isotope and elemental geochemistry clearly show the Chattian-Aquitanian and Aquitanian-Burgidalian boundaries.

کلیدواژه‌ها [English]

  • Asmari Formation
  • Geochemistry
  • Oligocene
  • Miocene
آدابی، م.، 1383- ژئوشیمی رسوبی، انتشارات آرین زمین، 448 صفحه.
 
References
Adabi, M. H., 1996- Sedimentology and geochemistry of Upper Jurasic (Iran) and Precambrian (Tasmania) carbonates, Unpubl. Ph.D. Thesis, Uni. Tasmania, Australia, 400p.
Adabi, M. H. & Rao, C. P., 1991- Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area,Iran, Sed. Geology, 72 , p.253-267.
Al-Aasm, I.S. & Veizer, J., 1986- Diagenetic stabilization of aragonite and low-Mg calcite, II. Stable isotopes in rudists: Jour. Sed. Petrology, 56, p. 763-770.
Alavi, M., 2004- Regional stratigraphy of the Zagros Fold-Thrust Belt of Iran and its proforeland evolution. Am. Jour. Sciences, 304, p. 1-20.
Allan,J. K. & Wiggins, W. D., 1993- Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution, Pub. American Association of Petroleum Geology (AAPG), 1-10p.
Bahroudi, A., & Koyi, H.A., 2004- Tectono-sedimentary framework of the Gachsaran Formation in the Zagros forland basin, Marine and Pertoleum Geology,  21, p.1295-1310.
Brand, U., & Veizer J., 1980- Chemical diagenesis of a multicomponent carbonate system-1: trace elements, Jour. Sed. Petrology, 50, p.1219-1236.
Brand, U. & Morrison, J.O., 1987b- Paleoscene #6. Biogeochemistry of fossil marine invertebrates: Geosci. Canada, Vol. 14, p.85-107.
Buchardt, B., 1978- Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area: Nature, Vol. 275, p. 121 – 123.
Dickson, J. A. D., 1965- A modified Stainin technique for Carbonate in thin section: Nature,  p. 205 – 587.
Lohmann, K. C., 1988- Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst, In James, N. P., and Choquette, P. W., (eds.), Paleokarst: New York, Spring-Verlag, p. 58-80.
Meulenkamp, J. J., Sissingh, W., Popov, S.V., Kovac, M. & Bergerat, F., 1993-  Late Rupelian (32-29Ma), Map 19. In: Dercourt, J., Ricou, L.E. and Vrielynck (eds), Atlas Tethys Palaeoenvironmental Maps. Gauthier-Villars. Paris.
Miller, K. G., Fairbanks, R. G. & Mountain, G. S., 1987- Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion: Paleoceanography, Vol. 2, p. 1-19.
Rao, C. P., 1990- Geochemical characteristics of cool-temperate carbonates, Tasmania, Australia: Carbonates  and Evaporites,  5, p. 209-221.
Rao, C. P., 1991-  Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia, Carbonates and Evaporites , No6, 83-106p.
Rao, C. P., 1996-  Modern Carbonates, Tropical Temperate Polar, 21-55p , 71-79p and 175-205p.
Thomas, A. N., 1950- The Asmari Limestone of south-west Iran. Report of the 18th International Geological Congress (Great Britain), Part 6, 35-44.
Savin, S. M., Dougls, R. G., & Stehli, F. G., 1975- Tertiary marine paleotemperatures: Bll. Geol. Soc. Amer., Vol. 86, p. 1499 – 1510.
Veizer, J., 1983- Chemical diagenesis of carbonates: theory and application of trace element technique. In Arthur, M. A., Anderson, T.F., Kaplan, I. R., Viezer. J., & Land, L. S. (eds.): Stable Isotopes in Sedimentary Geology, Tulsa, Okla: Soc. Econ. Paleontol. Mineral. Short Course, No. 10, p.31-1 to 3-100.
Winefield, P. R., Nelson C. S. & Hodder, A. P. W., 1996- Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry, a reconnaissance study based on New Zealand Cenozoic limestones: Carbonates and Evaporites , 11, p. 19-31.