مطالعه ساختار سرعتی پوسته و سازوکار گسلش در زون گسلی امتداد لغز تبریز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

2 پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

3 مرکز ژئوفیزیک و تکتونوفیزیک دانشگاه ژوزف فوریه گرونوبل، فرانسه

چکیده

گسل شمال تبریز یکی از گسل‌های فعال در شمال باختر ایران است. وجود این گسل سبب بالا رفتن خطر لرزه‌ای در این ناحیه از کشور از جمله شهر تبریز با جمعیتی بالغ بر 6/1 میلیون نفر شده ‌است. به‌منظور بررسی و تعیین هندسه و نحوه حرکت این گسل، به مدت 3 ماه، شبکه‌ای متراکم از 40 ایستگاه لرزه‌نگاری 3 مؤلفه در اطراف قسمت مرکزی گسل تبریز که از قسمت شمالی شهر تبریز عبور می‌کند، نصب شد. با استفاده از خرد زمین‌لرزه‌های ثبت شده در شبکه موقت نصب شده و بیش از 6 سال داده‌های ثبت شده در شبکه دائمی 8 ایستگاهی تبریز، مدل یک بعدی سرعتی پوسته در این ناحیه تعیین شد. نتایج کار نشان می‌دهد که پوسته بالایی در این ناحیه، از لایه‌ای از رسوبات  با ستبرای میانگین 6 کیلومتر (VP= 5.23 km s-1) در بالای یک لایه بلورین با ستبرای میانگین 18 کیلومتر (VP= 5.85 km s-1) تشکیل شده ‌است. این دو لایه بر روی یک نیم فضا با سرعت میانگین VP= 6.54 km s-1  قرار دارند که با توجه به محدودیت عمقی زمین‌لرزه‌های ثبت شده، نمی‌توان ستبرای این لایه را تعیین کرد.  زمین‌لرزه‌های تعیین محل شده با دقت بالا، حاکی از فعالیت لرزه‌ای در امتداد گسل شمال تبریز هستند. بررسی دقیق محل کانونی زمین‌لرزه‌ها در مقاطع مختلف، نشان‌دهنده شیب تند به سمت شمال خاوری در قسمت‌های باختری و میانی گسل شمال تبریز و شیب تند به سمت جنوب باختری در قسمت خاوری این گسل است. تمامی ساز وکارهای محاسبه شده، بیانگر حرکت امتداد لغز راست‌گرد در این گسل هستند. سازو‌کارهای محاسبه شده، با مقاطع کانونی زمین‌لرزه‌ها همخوانی داشته و نشان‌دهنده وجود نیرو با مؤلفه کششی در قسمت‌های خاوری گسل در مقایسه با وجود نیرو با مؤلفه تراکمی در قسمت باختری گسل هستند. سازوکارهای مشاهده شده در تحقیق ما و نتایج مطالعات مربوط به اندازه‌گیری‌های سرعت حرکت در این منطقه به کمک GPS بیانگر این مطلب است که گسل شمال تبریز یکی از مجموعه گسل‌های امتداد لغزی است که سبب تسهیل حرکت افقی قسمتی از پوسته به سمت شمال خاور در این ناحیه متراکم شونده، می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Crustal Velocity Model and Fault Mechanism of the Tabriz Strike-Slip Zone.

نویسندگان [English]

  • A. S. Moradi 1
  • M. Tatar 2
  • D. Hatzfeld 3
  • A. Paul 3
1 Institute of Geophysics, University of Tehran (IGUT), Tehran, Iran International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
2 International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
3 Laboratoire de Geophysique Interne et Tectonophysique, Universite Joseph Fourrier Grenoble – CNRS,
چکیده [English]

The North Tabriz Fault (NTF) is an active fault which poses a high seismic hazard to the areas of NW Iran, especially the city of Tabriz with a population of 1.6 million. In order to determine the geometry and the kinematics of this fault system, a local dense seismological network including forthy 3-component stations was installed around the central segment of Tabriz Fault which crosses the northern part of the city of Tabriz. This network operated for 3 months. Using microearthquakes recorded by our temporary network in addition of more than 6 years of local events recorded by 8 permanent stations of Tabriz telemetry network, the 1-D crustal velocity of the region was determined. Our results indicates that the upper crust consists of a ~6 km thick sedimentary layer (VP = 5.23 km s-1) overlying a ~18 km thick upper crystalline crust (VP = 5.85 km s-1). We estimate a velocity of 6.54 km s-1 for the lower crystalline crust, but the limited focal depths of our local events did not allow determining the thickness of this layer. The well-located earthquakes indicate the seismic activity along the Tabriz fault. Precise examination of the focal depths on different cross sections indicates that the western and central segment of this fault system dip northeast ward while the eastern part shows almost southwest dipping plane. Calculated focal mechanism all indicate the right-lateral strike-slip motion of the Tabriz Fault. The most reliable fault plane solutions are consistent with cross sections showing evidence of extension in Eastern part comparing to compression observed in Western segment. Our focal mechanisms and geodetic studies using GPS measurements indicate that the North Tabriz Fault helps to northeast motion of trapped crust in this area.
 

کلیدواژه‌ها [English]

  • North Tabriz Fault
  • Crustal velocity
  • focal mechanism
  • Right-lateral strike-slip motion

References

Allen, M., Jackson, J. & Walker, R., 2004- Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics, 23, TC2008, doi:10.1029/2003TC001530.

Ambraseys, N. & Melville, C., 1982- A history of Persian Earthquakes, Cambridge Univ. Press, Cambridge, UK.

Barka, A. A. & Kadinsky-cade,  K., 1988- Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics.7, 663–84.

Bayramnejad, E., Mirzaei, M. & Gheitanchi, M. R., 2008- Determination of improved velocity model for the north westIran region, using simultaneous inversion of local earthquake travel times., Journal of the Earth and Space Physics. 33 (No.3), 47- 59.

Berberian, M. &  Arshadi, S., 1976- On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city, Geol. Surv. Iran Rep., 39, 397-418.

Berberian, M. &  Yeats, R. S., 1999- Pattern of historical earthquake rupture in the Iranian Plateau. Bull. Seism. Soc. Am., 89, 120-139.

Berberian, M., Jackson, J. A., Qorashi, M., Talebian, M., Khatib, M.M. & Priestley, K., 2000- The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone, Geophys. J. Int., 142, 283 299.

Copley, A. &  Jackson, J., 2006- Active tectonics of the Turkish-Iranian Plateau, Tectonics, 25, TC6006, doi:10.1029/2005TC001906.

Dewey, J. F., Hemton, M. R., Kidd, W. S. F., Saroglu, F. & Sengor, A. M. C., 1986- Shortening of continental lithosphere: The neotectonicsof eastern Anatolia, a young collision zone, in Collision Tectonics, edited by M. P. Coward and A.C. Ries, Geol. Soc. Spec. Publ., 19, 3-36.

Engdahl, E.R., Jackson, J. A., Myers, S. C., Bergman, E. A.  & Priestley, K., 2006- Relocation and assessment of seismicity in the Iran region. Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03127.x

England, P & Molnar, P, 1990- Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet, Nature. 344, 140-142.

Falcon, N.L., 1974- Southern Iran: Zagros mountains, Geol. Soc. Lond. Spec. Pub., 4, 199-211.

Frechet, J. &  Thouvenot ,F., 2003- PickEv 2000: Software to visualize, pick and process seismograms and locate local and teleseismic events.

Havskov, J. &  Ottemöller, L., 2005- SEISAN: the earthquake analysis software, version 8.1.

Harvard. Department of Geological Sciences, Centroid Moment Tensor catalogue, available on line at: http://www.globalcmt.org/CMTsearch.html

Hessami, K., Pantosti, D., Tabasi, H., Shabanian, E., Abbasi, M.R., Feghhi, K.
& Soleymani, S., 2003- Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Annals of Geophysics, 46, 903-915. 

Jackson, J. A. & McKenzie, D., 1984- Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan, Geophys. J. R. Astr. Soc., 77, 185-264.

Jackson, J. A., Haines, A. J. & Holt, W. E., 1995- The accommodation of Arabia-Eurasia plate convergence in Iran, J. Geophys. Res., 100, 15,205- 15,209.

Jackson, J. A. & McKenzie, J., 1988- The relationship between plate motion and seismic moment tensors and the rate of active deformation in the Mediterranean and Middle East, Geophys. J. R. Astron. Soc., 93, 45-73.

Karkhanian, A., Trifonov, V., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Bayraktutan, M. S., Bagdassarian, H., Arakelian, S., Davtyan, V. &  Adilkhanyan, A., 2004- Active faulting and natural hazards in Armenia, eastern Turkey and Northern Iran : Tectonophysics, 380, 189-219.

Kissling, E., 1988- Geotomography with local earthquake data, Rev. Of  Geophys., 26, 659-698.

Kurushin, R.A., Bayasgalan, A., Olziybat, M., Enhtuvshin, B., Molnar, P, Bayarsayhan, Ch., Hudnut, K.W. & Lin, J., 1997- The surface rupture of the 1957 Gobi-Altay, Mongolia, earthquake, Geol. Soc. Am. Special Paper# 320.

Masson, F., Chery, J., Martinod, J., Hatzfeld, D., Vernant, P., Tavakoli, F. &  Ghafori-Ashtiani, M., 2005- Seismic versus aseismic deformation in Iran inferred from earthquake and geodetic data, Geophys. J. Int., 160, 217-226.

Masson, F., Van Gorp, S., Chery, J., Djamour, Y., Tatar, M., Tavakoli, F., Nankali, H. &  Vernant, P. 2006- Extension in NW Iran Driven by the Motion of the SouthCaspianBasin, Earth Planet. Sci. Lett, 252, 180-188.

McClusky, S., Bassalanian, C., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Hans-Gert, H.-G.,. Karstens, K, Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Relinger, R., Sanli, I., Seeger, H., Tealeb, A.,  Toksaz, M.N. & Veis, G., 2000- Global Positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res, 105 (B3), 5695-5719.

Mokhtari,D., 2007- Sag ponds on Tabriz fault: Landforms produced by active tectonics, Geosciences, 16 (No63), 40-49.

Mial, A. D., 1990- Principles of sedimentary basin analysis. Springer-Verlag pub.

Reilinger, R.E., S.C. McClusky, M.B. Oral, R.W. King, M.N. Toksoz, A.A. Barka, I. Kinik, O. Lenk, and I. Sanli, 1997- Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone, J. Geophys. Res., 102, 9983-9999.

Reilinger, R., McClusky, S., Vernant, P., Laurence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., ArRajehi, A., Abdulaziz, K., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., & Karam, G., 2006- GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 111, B05411, doi:10.1029/2005JB004051.

Sengor, A. M. C. & Kidd, W. S. F., 1979- Post-collisional tectonics of the Turkish – Iranian plateau and a comparison with Tibet, Tectonophysics, 55, 361-367.

Stewart, I. S. &  Hancock, P. L., 1992- Neotectonics. In : Twiss & Moores. Structural geology : freeman. 370 – 409.

Vernant, P., Nilfroushan, F., Hatzfeld, D., Abbassi, M., Vigney, C., Masson, F., Nankali, H. &  Martinod, J., 2004- Contemporary Crustal Deformation and Plate Kinematics in Middle East constrained by GPS Measurements in Iran and North Oman, Geophys. J. Int., 157, 381-398.

Wadati A., 1933- On travel time of earthquake waves, part II., Geophys Mag. (Tokyo) 7, 101-111.

Yeats, R., Sieh, K., & Allen, C., 1997- The Geology of Earthquakes: OxfordUniversity Press.