کانی شناسی و ژنز کانسار مس خلیفه‌لو با تکیه بر داده‌های ژئوشیمیایی سنگ میزبان و ویژگی‌های ایزوتوپی O و S

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 استاد، گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

3 استادیار، گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

کانسار مس خلیفه‌لو (جنوب خاوری زنجان) یک نمونه از ذخایر رگه‌ای با میزبان آتشفشانی است که در زون متالوژنی طارم و در البرز باختری (شمال باختر ایران) واقع شده است. زون طارم به‌طور عمده از نهشته‌های آتشفشانی و ولکانوکلاستیک  سازند کرج ( ائوسن آغازی تا میانی) تشکیل شده است. از نظر موقعیت چینه‌شناسی سازند کرج به دو عضو کردکند و آمند تقسیم شده است. عضو آمند بر روی عضو کردکند قرار گرفته و به 6 واحد Ea1 تا Ea6 تقسیم شده است. ذخیره مس خلیفه‌لو در واحد‌های Ea5 و Ea6 از عضو آمند جای گرفته است. سازند کرج توسط توده‌های نفوذی بزرگ و کشیده با گرایش کالک‌آلکالن قطع شده است. سنگ میزبان ماده معدنی توف‌های سبز و ندرتاً آندزیت‌ها هستند. الگو‌های عناصر نادر خاکی در نمونه‌های مورد مطالعه، نشان‌دهنده بی‌هنجاری منفی عنصر Eu است که ناشی از تجزیه پلاژیوکلاز‌هاست. در تمامی نمونه‌های سنگی مورد مطالعه، غنی‌شدگی از عناصر نادر خاکی سبک (LREE) و عناصر  لیتوفیل بزرگ‌یون (LILE) و نیز تهی‌شدگی از عناصر با شدت میدان قوی (HFSE) مشاهده می‌شود.  این مسئله احتمالاً نشان‎دهنده منشأ مشترک این سنگ‌هاست. کانه‌های اصلی شامل کالکوپیریت، بورنیت، کالکوسیت و کوولیت و کانی‌های گانگ شامل کوارتز، سریسیت و کلسیت هستند. در این مقاله منشأ سیالات کانسار‌ساز و ژنز کانسار مس خلیفه‌لو با استفاده داده‌های ایزوتوپی گوگرد و اکسیژن مورد بررسی قرار گرفته‌ است. مقادیر ایزوتوپ گوگرد کالکوپیریت 2- تا 3/5- در هزار است. با توجه به مقادیر منفی ایزوتوپ گوگرد و وجود پیریت‌های فرامبوییدال در توف‌ ماسه‌ای میزبان کانه‌زایی، می‌توان گفت سولفید‌های ذخیره خلیفه‌لو توسط سیالاتی تشکیل شده‌اند که گوگرد آنها از یک منبع رسوبی مشتق شده است. مقادیر ایزوتوپ اکسیژن کوارتز 3/12 تا 3/14 در هزار و مقادیر δ18O سیالات محاسبه شده از نمونه‌های کوارتز در گستره 6/0 تا 6/3 در هزار هستند. با استفاده از داده‌های ایزوتوپ اکسیژن منشأ سیالات کانه‌ساز در کانسار مس خلیفه‌لو سیالات جوی- سازندی معرفی شده است. این تحقیق نشان‎دهنده شباهت کانسار خلیفه‌لو با ذخایر رگه‌ای تیپ کوردیلرایی (cordilleran) است.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy, and genesis of Khalyfehlou copper deposit based on host rock geochemical data and o-s isotope characteristics

نویسندگان [English]

  • M. Esmaeli 1
  • M. Lotfi 2
  • N. Nezafati 3
1 Ph.D. Student, Department of Geology, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Professor, Department of Geology, Islamic Azad University, Science and Research Branch, Tehran, Iran
3 Assistant Professor, Department of Geology, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده [English]

Khalyfehlou Cu deposit (southeast of the Zanjan), is the volcanic-hosted vein-type deposit located in the Tarom metallogenic zon,Western Alborz (northwest of Iran) . Tarom zone consist mainly of volcanic and volcaniclastic rocks of the Karaj Formation (Early to Middle Eocone). Regarding the stratigraphic position, the Karaj Formation is divided into two members:  Kordkand and Amand. The Kordkand member is overlain by the Amand member .The Amand member is divided into six units, Ea1 through Ea6. The Khalyfehlou Cu deposit is located  in Ea5 and Ea6 units of Amand member .The Karaj Formation is interrupted by large and linear intrusions with calc alkaline affinities. Host rocks are green tuffs and, rarely, andesites. The patterns of rare earth elements in the studied samples indicate the negative anomaly of Eu element due to plagioclase subtraction. In all the samples, the enrichment of light rare earth elements (LREE) and large lithophil ion (LILE) elements and the depletion of strong field strength elements (HFSE) are observed. This probably indicates the common origin of these rocks. Main minerals include chalcopyrite, bornite, chalcocite, and covellite and gangue minerals including quartz, sericite, and calcite. In this paper the origin of ore-forming fluids and genesis of Khalyfehlou Cu deposit is studied using sulfur and oxygen isotope data. The sulfur isotope values for the chalcopyrite range from −2.0 to −5.3‰. Negative sulfur isotopes values and the occurrence of framboidal pyrite in the tuffaceous sandstone host rocks suggests a sedimentary origin for the sulfur. The oxygen isotope composition of quartz from the veins ranges from 12.3 to 14.3‰. The δ18Ofluid values calculated from the oxygen isotope data range from 0.6‰ to 3.6‰. The O isotopic characteristics indicate that the ore-forming fluids for the Khalyfehlou deposit was meteoric-formational water.This study suggests that mineralization at the Khalyfehlou deposit is similar to cordilleran vein-type deposits.
 

کلیدواژه‌ها [English]

  • Khalyfehlou
  • Copper deposit
  • Tarom zone
  • Sulfur and oxygen isotopes
  • vein deposit

کتابنگاری

پرچگانی، م. و بازرگانی گیلانی، ک.، 1389- ویژگی‌های فلززایی (متالوژنیکی) کانسار سرب و روی (مس) باریک‌آب با سنگ میزبان توف اسیدی، رشته کوه‌های طارم، جنوب خاور زنجان، شمال باختر ایران. فصلنامه علمی علوم زمین، دوره 20، شماره 78، صص. 97 تا 104.

فیضی، ف. و آرین، م.، 1390- نقش کنترل کننده‌های ساختمانی در تشکیل کانسارهای مس در نقشه 50000/1 صائین قلعه. مجله علوم پایه دانشگاه آزاد اسلامی، دوره 21، شماره 81، 10 ص.

نبوی، م. ح .، 1355- دیباچه‌ای بر زمین‌شناسی ایران، سازمان زمین‍شناسی کشور، 109 ص.

 

References

Bailey, J. C., 1981- Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology 32:139 –154.

Baumgartner, R., Fontboté, L. and Vennemann, T., 2008- Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology 103: 493-537.

Bendezú, R., Page, L., Spikings, R., Pecskay, Z. and Fontboté, L., 2008- New 40Ar/39Ar alunite ages from the Colquijirca District, Peru. Evidence of long period of magmatic SO2 degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores. Mineralium Deposita 43:777–789.

Berner, R. A.,1970- Sedimentary pyrite formation. American  Journal of  Science 268:1–23.

Canfield, D. E. and Berner, R. A., 1987- Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim Cosmochim Acta 51:645–659.

Chappell, B. W., 1999- Aluminium saturation in I–and S–type granites and the characterization of fractionated haplogranites. Lithos 46: 535–551.

Criss, R. E. and Farquhar, J., 2008- Abundance, notation, and fractionation of light stableisotopes. Rev Mineral Geochem 68:15–30.

De la Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M., 1980- A classification of volcanic and plutonic rocks using R1,R2-diagrams and major element analysis—its relationships with current nomenclature. Chemical Geology 29:183 –210.

Degens, E. T., Okada, H., Honjo, S. and Hathaway, J. C., 1972- Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Miner Deposita 7:1–12.

Einaudi, M. T., 1982- Description of skarns associated with porphyry copper plutons, southwestern North America. in: Titley SR (ed) Advances in geology of the porphyry copper deposits, southwestern North America. University of  Arizona Press, Tucson 139–184.

Guest, B., Guest, A. and Axen, G., 2007- Late Tertiary tectonic evolution of Northern Iran: Acase for simple crustal folding, Global and Planetary Change. Geosphere 58:435 – 453.

Guilbert, J. M. and Park, C. F. Jr., 1986- The geology of ore deposits, 4th edn. Freeman, New York, pp 1-985.

Guo, Z. F., Wilson, M., Liu, J. Q. and Mao, Q., 2006- Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms.Journal of Petrology  47:1177 – 12020.

Hirayama, K., Samimi, M., Zahedi, M. and Hushmandzadeh, A., 1966- Geology of the Tarom District, Western Part (Zanjan area, Northwest Iran), with 1 : 100.000 map. Geological Survey of Iran, Tehran, Report, No 8.

Hoefs,  J., 1997- Stable Isotope Geochemistry, 4th edn. Springer-Verlag, Berlin, pp. 1-201.

Hoefs, J., 2009- Stable Isotope Geochemistry, 6th edn. Springer-Verlag, New York, pp. 1-227.

Huang, D. Z., Wang, X. Y., Yang, X. Y., Li, G. M., Huang, S. Q., Liu, Z., Peng, Z. H. and Qiu, R. L., 2011- Geochemistry of gold deposits in the Zhangbaling tectonic belt, Anhui province, China.  International Geology Review 53:612–634.

Irvine, T. N. and Baragar, W. R. A., 1971- A Guide to the chemical classification of the common Volcanic Rocks. Canadian Journal of Earth Science 8: 523 –548.

Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. and McDonald, G. D., 2002- Fluid–mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology 144: 38–56.

Kanehira, K. and Bachinski, D., 1967- Framboidal pyrite and concentric features in ores from the Tilt Cove mine, Northeastern Newfoundland. Can Mineral 9:124–127.

Kent, A. J. R. and Elliot, T. R., 2002- Melt inclusions from Marianas arc lavas: implications for the composition and formation of island arc magmas. Chemical Geology 183:263–286.

Kikawada, Y., Ossaka, T., Oi, T. and Honda, T., 2001- Experimental studies on the mobility oflanthanides accompanying alteration of andesite by acidic hot spring water. Chemical Geology 176:137-149.

Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. and Zanettin, B., 1986- A chemical classification of Volcanic Rocks based on the total Alkali-Silica diagram. Journal of Petrology, Vol 27, No 3, pp 745–750.

Lottermoser, B. G., 1992- Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews 7:25-41.

Love, L. G. and Amstutz, G. C .,1966- Review of microscopic pyrite from the Devonian Chattanooga shale and Rammelsberg Banderz. Fortschr Miner 43:273–309.

Malekzadeh.S, A. and Karimpour, M. H., 2015- Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran , Journal of African Earth Sciences 107:1-14.

Menon, K. K., 1967- Origin of diagenetic pyrite in the Quilon Limestone, Kerala, India. Nature 213:1219–1220.

Middlemost, E. A. K., 1985- Naming materials in the magma/igneous rock system. Earth-Sciences Reviews 37: 215 – 224.

Miyashiro, A., 1974- Volcanic rock series in island arcs and active continental margins. American Journal of Science  274: 321–355.

Nabatian, G. H., Ghaderi, M., Neubauer, F., Honarmand, M., Liu, X., Dong, Y., Jiang, S. Y., Quadt, A. V. and Bernroider, M., 2014- Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: Geochemical, U-Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos 184–187, 324–345.

Nagudi, B., Koeberl, C. and Kurat, G., 2003- Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. Journal of African Earth Sciences 36: 73–87.

Nakamura, N., 1974- Determination of REE, Ba, Fe,Mg, Na, and K in  carbonaceous and ordinary chondrites. Geochimica et Cosmoschimica Acta 38; 757–775.

Ohmoto, H. and Goldhaber, M. B.,1997- Sulfur and carbon isotopes. In: Barnes HL (ed.) Geochemistry of hydrothermal ore deposits, 3rd edn. New York, Wiley, pp 435–486.

Ohmoto, H. and Rye, R. O., 1979- Isotopes of sulfur and carbon. In: Barnes HL(ed) Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York, pp 509–567.

Ohmoto, H., 1972- Systematics of the sulfur and carbon in hydrothermal oredeposits. Economic Geology 67: 551–579.

Pearce, J. A., Harris, N. W. and Tindle, A. G., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25: 956–983.

Rollinson, H. R., 1993- Using geologicala data, evolution, presentation, interpretation.Longman Ltd. Publication 352 pp.

Rollinson, H. R., 1994- Using geochemical data: evaluation, presentation, interpretation. Longman, New York.

Sajona, F. G., Maury, R. G., Bellon, H., Cotten, J. and Defant, M., 1996- High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts,Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology 37: 693 – 726.

Sawkins, F. J., 1972- Sulfide ore deposits in relation to plate tectonics. Journal of Geology 80: 377 –397.

Schallreuter, R., 1984- Framboidal pyrite in deep-sea sediments. Initial Reports of the Deep Sea Drilling Project 75: 875 –891.

Scott, R. J., Meffre, S., Woodhead, J., Gilbert, S. E., Berry, R. F. and Emsbo, P., 2009- Development of Framboidal Pyrite During Diagenesis, Low-Grade Regional Metamorphism, and Hydrothermal Alteration. Economic Geology 104:1143–1168.

Shepherd, T. J., Ranbin, A. H., Alderton, D. H. M., 1985- A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow 239 p.

Skei, J. M., 1988- Formation of  framboidal iron sulfide in the water of a permanently anoxic fjord -Framvaren, South Norway. Mar Chem 23:345–352.

Steinike, K., 1963- A further remark on biogenic sulfides: inorganic pyrite spheres. Economic Geology 58: 998–1000.

Sun, S. S. and McDonough, W. F.,1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London,Special Publication  42: 313 –345.

Tu, W., Du, Y. S., Wang, G. W. and Lei ,Y. P., 2013- Cordilleran vein type Pb-Zn-polymetallic deposits of the Xidamingshan district, Guangxi, SW China: Fluid inclusion and geochemical studies. Geology of Ore Deposits 55: 494–502.

Wang, G. G., Ni, P., Wang, R. C., Zhao, K. D., Chen, H., Ding, J. Y., Zhao, C. and Cai, Y. T., 2013- Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, south China: Implications for ore genesis and exploration. J Asian Earth Sci 74: 343–360.

Wilson, M., 1989- Igneous petrogenesis: A global tectonic approach. Unwin Hyman, London.

Wilson, M., 2007- Igneous petrogenesis. Chapman and Hall. 466p.

Zanchi, A., Berra, F., Mattei, M., Ghasemi, M. R. and Sabouri, J., 2006- Inversion tectonics In Central Alborz, Iran. Journal of Structural Geology 28: 2023 –2037.

Zhang, L. G., Liu, J. X., Zhou, H. B. and Chen, Z. S.,1989- Oxygen isotope fractionation in the quartz-water-salt system. Economic Geology 84: 1643–1650.

Zhang, L., 2000- Stable Isotope Investigation of a Hydrothermal Alteration System: Butte Porphyry Copper Deposit. degree of Doctor of Philosophy in Geology.