ژئوشیمی و پتروژنز توده های نفوذی شمال خاور رشتخوار (روستای شهرک و سعادت‎آباد- خراسان رضوی)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه زمین شناسی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

2 استادیار، گروه زمین شناسی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

3 استاد، دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

4 استادیار، سازمان زمین‎شناسی و اکتشافات معدنی کشور، تهران، ایران

چکیده

توده­های نفوذی رشتخوار در شمال ­خاور شهرستان رشتخوار (استان خراسان رضوی)، درلبه­خاوری­کمربندآتشفشانی- نفوذیخواف- کاشمر- بردسکن،شمالگسلدرونه ودرجنوب پهنه­ساختاری سبزوارواقعشده‎اند. ترکیب سنگ­شناسی توده­های نفوذی عمدتاً شامل سینیت، مونزوسینیت، مونزونیت، سینیت­، مونزونیت و دیوریت ­پورفیری با کمترین گسترش است که دارای بافت گرانولار و پورفیری هستند. براساس داده‎های ژئوشیمیایی، توده­های نفوذی رشتخوار از نوع کالک­آلکالن با ماهیت پتاسیم بالا تا شوشونیتی و متاآلومین هستند و در گروه­ گرانیت­های نوع I قرار دارند. الگوی تغییرات عناصر کمیاب­خاکی وکمیاب بهنجار شده نسبت به کندریت و گوشته ­اولیه نشان­دهنده­ غنی­شدگی این سنگ­ها از LILE،LREE و Th، تهی­شدگی از HFSE و تهی­شدگی اندک از HREE و Y، همراه با آنومالی­های منفی Nb، Ta وTi است، این ویژگی­ها موقعیت زمین­ساختی حاشیه فعال قاره­ای و  پس از برخوردی را نشان می­دهند. مقادیر پایین از نسبت­های Nb/La، Nb/U وCe/Pb و مقدار Sm/Yb= 2.8-3.9 نشان­دهنده­ آلایش­کم ماگما با پوسته­ بالایی است. عامل اصلی فعالیت ماگمایی در ناحیه رشتخوار ذوب بخشی­گوه­­گوشته­ای متاسوماتیسم ­شده شبیه (E-MORB) با ترکیب اسپینل- لرزولیت دارای فلوگوپیت است. بر اساس الگوی چند عنصری و REE و نسبت K2O/Na2O، در سنگ­های نفوذی رشتخوار آلایش و آمیختگی با ماگمای اسیدی پوسته­­زیرین در رخساره­ آمفیبولیتی به­علت گرمای ماگمای گوشته­ای و فرایند AFC در تکامل ماگما نقش مهمی داشته است. ترکیب پتاسیک نمونه­ها، غنی­شدگی از Rb، Ba، K، Th، U و Pbو تهی­شدگی از Nb، Ta، Tiبه همراه فراوانی بالای La(ppm 29<) نشانگر نقش پوسته­­زیرین در تکامل ماگمای سازنده سنگ­های­ نفوذی است. باتوجه به اطلاعات به دست آمده ازمطالعات صحرایی،سنگ­شناسی،ژئوشیمی و نمودارهای تمایز محیط­های زمین‌ساختی­توده نفوذی رشتخوار در یک محیط کششی پس از برخورد وابسته به حاشیه ­قاره­ای ازذوب گوشته- پوسته­زیریندرکمربند خواف- کاشمر- بردسکن تشکیل شده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry and petrogenesis of the northeastern Roshtkhar intrusive rocks, (Shahrak and SaadatAbad villages, Khorassan-Razavi)

نویسندگان [English]

  • E. Alizadeh 1
  • Gh. R. Ghadami 2
  • D. Esmaeily 3
  • J. Omrani 4
  • A. Golmohammadi 4
1 Ph.D. Student, Department of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
2 Assitant Professor, Department of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
3 Professor, School of Geology, College of Sciences, University of Tehran, Tehran, Iran
4 Assitant Professor. Geological Survey of Iran, Tehran, Iran
چکیده [English]

The Roshtkhar intrusive rocks are located in the northeastern part of the Roshtkhar prospecting area (KhorassanRazavi province), along the eastern edge of the Khaf-Kashmar-Bardaskan volcano-plutonic belt, north of the Dorouneh Fault and on the southern part of the Sabzevar structural zone. The intusive rocks consist mainly ofsyenite to monzonite with minor amount of syenite porphyry, monzonite porphyry, and diorite porphyry with granular and porphyry texture, respectively. According to the geochemical data, the Roshtkhar intrusive rocks are calc-alkaline granitoid series with high-K to shoshonitic affinity, magnesian, metaluminous, and belong to I-type granites.Chondrite-normalized Rare Earth Element and mantle-normalized trace-element spider diagrams display enriched in LILE and LREE and also Th, depleted in HFSE and weak depletion in HREE and Y, along with negative anomalies of Nb,Ta, and Ti, that are characteristic of the post-collisional calc-alkaline rocks along with a continental active margin tectonic setting. In spite of the low ratios of Nb/U, Nb/La and Ce/Pb, the Sm/Yb (2.8-3.9) ratios reveals low contamination of magmas with upper continental crust. According to geochemistry of trace elements and REE, the main cause of magmatism in Roshtkhar area was melting of a metasomatized lithospheric mantle (E-MORB) with spinel lherzolite composition accompanied by in the presence of phlogopite. Multiple element and REE pattern, abundance of K2O/Na2O in Roshtkhar intrusive rocks show contamination and mixing with acidic magma ofamphibolitic lower crust due to temperature of mantle magma and AFC process played important roles in magma evolution. La vs. La/sm diagram illustrate partial melting and also according to K, positive anomalies of Rb, Ba, K, Th, U, and Pb, and the negative anomalies of Nb, Ti, Ta, and Ba associated with high La (La > 29), it seems partial melting of lower continental crust has played an important role in the genesis of the Roshtkhargranitoids rocks. Based on field investigation, petrographic studies, and lithogeochemistry using the granitoids discrimination tectonic setting diagrams, it seems that the Roshtkhar intrusive rocks were generated in a post-collisional extensional environment in a continental margin arc setting with partial melting of the mantle-lower crust within the Khaf-Kashmar-Bardaskan belt.

کلیدواژه‌ها [English]

  • Geochemistry
  • Petrogenesis
  • Roshtkhar intrusive rocks
  • Khaf- Kashmar- Bardaskan belt
  • South of the Sabzevar zone

کتابنگاری

آقانباتی، ع.،  1385- زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور، وزارت صنایع و معادن، 608 ص.

تیموری، خ.، 1391- پتروگرافی، ژئوشیمی و منشأ کانسار آهن رشتخوار و سنگ های میزبان مرتبط با آن، پایان­نامه کارشناسی­ ارشد، دانشگاه سیستان و بلوچستان، 145 ص.

گل­محمدی، ع.، 1393- پتروژنز توده­های نفوذی، پترولوژی اسکارن، منشأ محلول­های کانه­ساز و مغناطیس­سنجی معدن سنگ آهن شرق ایران (سنگان)، رساله­ دکترا، دانشگاه فردوسی مشهد، 484 ص.

یوسفی­سورانی، ل.، 1385- پتانسیل­یابی ورقه 100000/1 دولت­آباد با استفاده از داده­های ژئوشیمی رسوبات رودخانه­ای، ژئوفیزیکی و پردازش و تفسیر داده­های ماهواره­ای، پایان­نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، 387 ص.

 

 

References

Alavi, M., 1991- Tectonic map of the Middle East, Scale 1: 5,000,000. Geological Survey and Mining Exploration of Iran.

Aldanmaz, E., Pearce, J. A., Thirlwall, M. F. and Mitchell, J. G., 2000- Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, V. 102, p. 67- 95.

Alizadeh, E., Ghadami, Gh., Esmaeily, D., Ma, Ch., Lentz, D. R., Omrani, J. and Golmohammadi, A., 2018- Origin of 1.8 Ga zircons in Post Eocene mafic dikes in the Roshtkhar area, NE Iran. International Geology Review, V. 60, p. 1855-1882.

Almeida, M. E., Macambira, M. J. B. and Oliveira, E. C., 2007- Geochemistry and zircon geochronology of the I-type high-K calcalkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97-1.96 Ga) in central portion of Guyana Shield. Percambrian Research, V, 155, p, 69-97.

Altherr, R., Hall, A., Henger, E., Langer, C. and Kreuzer, H., 2000- High potassium, calc-alkaline I-type plutonism the Euro peanvariscides Northern Vosges (Farance) and NorthenSchwarzwald (Germany). Lithos, V. 50, p. 51-73.

Atherton, M. P. and Ghani, A. A., 2002- Slab breakoff: a model for Caledonian, late granite syncollisionalmagmatism in the orthotectonic metamorphic zone of Scotland and Donegal, Ireland. Lithos, V. 62, p. 65-85.

Bonin, B., 2004- Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, V. 78: p. 1-24.

Boomeri, M., 1998- Petrography and Geochemistry of the Sangan Iron Skarn Deposit and Related Igneous Rocks, Northeastern Iran. [Ph.D. thesis], Akita University, Japan, 226p.

Brenan, J. M., Shaw, H. F., Reyerson, F. J. and Phinney, D. L., 1995- Mineral-aqueous Fluid partitioning of trace elements at 900οC and 2 Gpa: Constraints on the rare element chemistry of mantle and deep crustal fluids. GeochimicaetCosmochimicaActa, V. 59, p. 3331-3350.

Brown, G. C., Thorpe, R. S. and Webb, P. C., 1984- The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of Geological Society of London, V. 141, p. 413-426.

Burnham, C. W., 1979- Magmas and hydrothermal fluids. In: Barnes, H.L., (Eds.), Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York, 71-136p.

Chappell, B. W. and White, A. J. R., 1992- I- and S-type granites in the Lachlan Fold belt.Transactions of the royal society of Edinburgh. Earth Science Reviews, V. 83, p. 1-26.

Chappell, B. W. and White, A. J. R., 2001- Two contrasting granite type: 25 years later. Journal of Earth Sciences, V. 48, p. 489-499.

Conceição, R. V. and Green, D. H., 2004- Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite+pargasitelherzolite. Lithos, V. 72, p. 209-229.

Condie, K. C., 1989- Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: identification and significance. Lithos, V. 23, p. 1-18.

De Yoreo, J. J., Lux, D. R. and Guidotti, C. V., 1989- The role of crustal anatexis and magma migration in the thermal evolution of regions of thickened continental crust. In: Daly, J. S., Cliff, R. A., Yardley, B. W. D., (Eds.,), Evolution of metamorphic belts. Geological Society London, Special Publication, V. 43, p. 187-202.

Defant, M. J. and Drummond, M. S., 1990- Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, V. 347, p- 662-665.

Esperanca, S., Crisci, M., de Rosa, R. and Mazzuli, R., 1992- The role of the crust in the magmatic evolution of the island Lipari (Aeolian Islands, (Italy). Contributions to Mineralogy and Petrology, V. 112, p. 450-462.

Fan, W. M., Gue, F., Wang, Y. J. and Lin, G., 2003- Late Mesozoic calc-alkaline volcanism of post-orogenicextention in the northen Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, V. 121, p. 115- 135.

Foley, S. F., Barth, M. G. and Jenner, G. A., 2000- Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica and CosmochimicaActa, V. 64, p. 933-938.

Furman, T. and Graham, D., 1999- Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province, Lithos, V. 48, p. 237-262.

Furman, T., 2007- Geochemistry of East African Rift Basalts: on overview. Journal of African Earth Science, V. 48, p. 147-160.

Girardi, J. D., Patchett, P. J., Ducea, M. N., Gehrels, G. E., Cecil, M. R., Rusmore, M. E., Woodsworth, G. J., Pearson, D. M., Manthei, C. and Wetmore, P., 2012- Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast mountains batholith, British Columbia. Journal of Petrology, V. 53, p. 1505-1536.

Golmohammadi, A., Karimpour, M. H., MalekzadehShafaroudi, A. and Mazaheri., S. A., 2015- Alteration-mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran: Ore Geology Reviews, V. 65, p. 545-563.

Gou, L., Zhang, L., Tao, R. and Du, J., 2012- A geochemical study of syn-subduction and post-collisional granitoids at Muzhaerte River in the Southwest Tianshan UHP belt, NW China. Lithos, V. 136-139, p. 201-224.

Grove, T. L. and Donnelly-Nolan, J. M., 1986- The evolution of young silicic lavas at Medicine Lake volcano, California: Implications for the origin of compositional gaps in calc- alkaline series lavas. Contributions to Mineralogy and Petrology, V. 92, p. 281-302.

Harris, N. B. W., Duyverman, H. J. and Almand, D. C., 1983- The trace element and isotope geochemistry of the Sabaloka igneous complex, Sudan. Journal of Geological Society of London, V. 140, p. 245-256.

Harris, N. B. W., Kelley, S. and Okay, A. L., 1994- Post- collision magmatism and tectonism in northwest Anatolia. Contributions to Mineralogy and Petrology, V. 117, p. 241-252.

Harris, N. B. W., Pearce, J. A. and Tindle, A. G., 1986- Geochemical characteristics of collision-zone magmatism. In: Coward, M. P., Ries, A. C., (Eds.), Collision Tectonics. Geological Society London, V. 19, p. 67- 81.

Hastie, A. R., Kerr, A. C., Pearce, J. A. and Mitchell, S. F., 2007- Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology, V. 48, p. 2341-2357.

Hermann, J., 2002- Allanite, Thorium and light rare earth element carrier in subducted crust. Chemical Geology, V. 192, p. 289-306.

Hofmann, A. W., Jochum, K. P., Seofert, M. and White, W. M., 1986- Nb and Pb in oceanic basalts: new constrains on mantel evolution, Earth and Planetary Science Letters,V. 79, p. 33- 45.

Hole, M. J., Saunders, A. D., Marriner, G. F. and Tarney, J., 1984- Subduction of pelagic sediments: implication for the origin of Ceanomalous basalts from Alexander Islands. Journal of Geological Society of London, V. 141, p. 453-472.

Kampunzu, A. B., Tombale, A. R., Zhai, M., Bagai, Z., Majaule, T. and Modisi, M. P., 2003- Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos, V. 71, p. 431-460.

Karsli, O., Dokuz, A., Uysal, İ., Ketenci, M., Chen, B. and Kandemir, R., 2012- Deciphering the shoshoniticmonzonites with I-type characteristic, the Sisdaği pluton, NE Turkey: Magmatic response to continental lithospheric thinning. Journal of Asian Earth Sciences, V. 51, p. 45-62.

Kay, S. M. and Mpodozis, C., 2001- Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust. Geological Society of American, V.11, p. 4-9.

KholghiKhasraghi, M. H., Naderi, N. and AlaviNaini, M., 1996- Geological map of Iran, Dolat-Abad, Scale 1:100,000.Geological Survey of Iran, Tehran.

Kolb, M., Von Quadt, A., Peytcheva, I., Heinrich, C. A., Fowler, S. J. and Cvetković, V., 2013- Adakite-like and normal arc magmas: distinct fractionation paths in the east Serbian segment of the Balkan-Carpathian arc. Journal of Petrology, V. 54, p. 421-451.

Li, J. X., Qin, K. Zh., Li, G. M., Xiao, B., Chen, L. and Zhao, J. X., 2011- Post-collisional orebearingadakitic porphyries from Gangdese porphyry copper belt, southern Tibet: Melting of thickened juvenile arc lower crust. Lithos, V. 126, p. 265-277.

Magnien, A., Salahshurian, M., Ternet, Y., Berthiaux, A., Christmann, P., Fauvelet, E., Harrival, J. N., Teherani, R., Weecksteen, G., Andreieff, P., Hottin. A. M., Danesfaleh, M., Sajedi, T. and AlaviNaini, M.,1983- Geological map of Iran, Gonabad, Scale 1:250,000. Geological Survey of Iran, Tehran.

MalekzadeShafaroudi, A., Karimpour, M. H. and Golmohammadi, A., 2013- Zircon U-Pb geochronology and petrology of intrusive rocks in the C-North and Baghak districts, Sangan iron mine, NE Iran. Journal of Asian Earth Sciences, V. 64, p. 256-271.

Maniar, P. D. and Piccoli, P. M., 1989- Tectonic discrimination of granitoids. Geological Society of America Bulletin, V. 101, p. 635-643.

Martin, H., 1999- Adakitic magmas: modern analogous of Archeangranitoids. Lithos, V. 46, p. 411- 429.

Mazhari, N., MalekzadehShafaroudi, A., Ghaderi, M., Star Lackey, J., Lang Farmer, G. and Karimpour, M. H., 2017- Geochronological and geochemical characteristics of fractionated I-type granites associated with the skarn mineralization in the Sangan mining region, NE Iran. Ore Geology Reviews, V. 84, p. 116-133.

Middlemost, E. A. K., 1985- Magmas and Magmatic Rocks. Longman, London and NewYork.

MonazzamiBagherzadeh, R., Karimpour, M. H., Lang Farmer, G., Stern, C. R., Santos, J. F., Rahimi, B. and HeidarianShahri, M. R., 2015- U-Pb zircon geochronology, petrochemical and Sr-Nd isotopic characteristic of Late Neoproterozoicgranitoid of the Bornaward Complex (Bardaskan-NE Iran). Journal of Asian Earth Sciences, V. 111, p. 54-71.

Morata, D., Oliva, C., de la Cruz, R. and Suarez, M., 2005- The Bandurrias Gabbro; late Oligocene alkaline magmatism in the Patagonian Cordillera. Journal of South American Earth Sciences, V. 18, p. 147-162.

Nagudi, N., Koberl, C. and Kurat, G., 2003- Petrography and geochemistry of the Sigo granite, Uganda and implications for origin. Journal of African Earth Sciences, V. 36, p. 1-14.

Pearce, J. A. and Parkinson, I. J., 1993- Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard, H. M., Albaster, T., Harris, N. B. W., Neary, C. R. (Eds.), Magmatic Processes in Plate Tectonics, Geological Society of London Special Publication, V. 76, p. 373-403.

Pearce, J. A. and Stern, R. J., 2006- Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives, in Back-Arc Spreading Systems. In: Christie, D. M., Fisher, C. R., Lee, S.M., Givens, S., (Eds.), Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C. 

Pearce, J. A., 1983- Role of the subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C. J., Norry, N. J. (Eds.), Continental Basaltsand Mantle Xenoliths. Shiva, Cheshire, UK, 230-249.

Pearce, J. A., 1996- Sources and settings of granitic rocks- Episodes, V. 19, p. 120-125.

Pearce, J. A., 2008- Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, V. 100, p. 14-48.

Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, V. 25, p. 956-983.

Plank, T., 2005- Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the ontinents. Journal of Petrology, V. 46, p. 921-944.

Ramezani, J. and Tucker, R. D., 2003- The Saghand region, Central Iran: U-Pbgechronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, V. 303, p. 622-665.

Roberts, M. P. and Clemens, J. D., 1993- Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, V. 21, p. 825-828.

Rollinson, H., 1993- Using geochemical data: evaluation, presentation, interpretation. Singapore. Longman Singapore Publishers Ltd., p. 1-351.

Rudnick, R. L. and Gao, S., 2003- Composition of the continental crust. In: Rudnick, R. L., (Eds.), The crust, treatise in geochemistry, Elsevier-Pergamon, Oxford, V. 3, p. 1-64.

Rutter, J. M. and Wyllie, P., 1988- Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust.Nature, V. 331, p. 159-160

Saunders, A. D., Tarney, J. and Weaver S. D., 1980- Transverse geochemical variations across the Antarctic Peninsula: implication for the genesis of calc-alkaline magmas.Earth and Planetary Science Letters, V. 46, p. 344-360.

ShafaiiMoghadam, H., Li, X. H., Ling, X. X., Santos, J. F., Stern, R. J., Li, Q. L. and Ghorbani, G., 2015- Eocene Kashmargranitoids (NE Iran): petrogenetic constraints from U-Pb zircon geochronology and isotope geochemistry. Lithos, V. 216-217, p. 118-135.

Stolz, A. J., Jochum, K. P., Spettel, B. and Hofmann, A. W., 1996- Fluid and melt related enrichment in thesub arc mantle: evidence from Nb/Ta variations in island arc basalts. Geology, V. 24, p. 587-590.

Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, V. 42, p. 313-345.

Taylor, S. R. and McLennan, S. M., 1995- The geochemical evolution of the continental crust. Reviews of Geophysics, V. 33, p. 241-265.

Ternet, Y., Guillou, Y., Maurizot, P., Berthiaux, A., Weecksteen, G., Hottin. A. M., Andreieff, P., Ancelin, J., Danesfaleh, M., Sajedi, T. and AlaviNaini, M., 1980a- Geological map of Iran, Khaf, Scale 1:100,000. Geological Survey of Iran, Tehran.

Ternet, Y., Salahshurian, M., Magnien, A., Weecksteen, G., Berthiaux, A., Hottin. A. M., Andreieff, P., Ancelin, J., Danesfaleh, M., Sajedi, T. and AlaviNaini, M., 1980b- Geological map of Iran, Roshtekhar, Scale 1:100,000. Geological Survey of Iran, Tehran.

Thieblemont, D. and Tegyey, M., 1994- Une discrimination geochimique des rochesdifferencieestemoin de la diversitedorigineet de situation tectonique des magmas calco-alcalins. C.R. Acad Sciences Paris, V. 319, p. 87-94.

Thuy, N. T. B., Satir, M., Siebel, W., Vennemann, T. and Long, T. V., 2004- Geochemical and isotopic constrains on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. Journal of Asian Earth Sciences, V. 23, p. 467-482.

Turner, S., Bourdon, B., Hawkesworth, C. and Evans, P., 2000- 226Ra-230Th evidence for multiple dehydration events, rapid melt ascent and the time scales of differentiation beneath the Tonga-Kermadec island arc. Earth and Planetary Science Letters, V. 179, p. 581-593.

Walker, J. A., Patino, L. C., Carr, M. J. and Feigenson, M. D., 2001- Slab control over HFSE depletions in Central Nicaragua. Earth and Planetary Science Letters, V. 192, p. 533-543.

Wang, Q., Wyman, D.A., Xu, J., Dong, Y., Vasconcelos, P.M., Pearson, N., Wan, Y., Dong,H., Li, C., Yu, Y., Zhu, T., Feng, X., Zhang, Q., Zi, F. and Chu, Z., 2008- Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet. Sci. Lett. 272, 158–171.

Weaver, B. L. and Tarney, J., 1984- Empirical approach to estimating the composition of the continental crust. Nature, V. 310, p. 575-577.

Whalen, J. B., Percival, J. A., McNicoll, V. J. and Longstaffe, F. G., 2004- Geochemical and isotopic (Nd-O) evidence bearing on the origin of late-to post-orogenic high-K granitoid rocks in the Western Superior Province: implication for late Archeantectonomagmatic processes. Precambrian Research, V. 132, p. 303-326.

Whitney, D. L. and Evans, B. W., 2010- Abbreviations for names of rock-forming minerals. American Mineralogist, V. 95, p. 185-187.

Wilson, M., 1989- Igneous petrogenesis: A global tectonic approach. Unwin Hyman, London, 466p.

Zhang, Zh. Y., Du, Y. S., Teng, Ch. Y., Zhang, J. and Pang, Zh. Sh., 2014- Petrogenesis, geochronology, and tectonic significance of granitoids in the Tongshan intrusion, Anhui Province, Middle-Lower Yangtze River Valley, eastern China. Journal of Asian Earth Sciences, V. 79, p. 792-809.

Zhao, Z. F., Zheng, Y. F., Wei, C. S. and Wu, Y. B., 2007- Post-collisional granitoids from the Dabieorogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, V. 93, p. 248-272.