نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

2 استادیار، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

3 دکترا، گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران، ایران

چکیده

تعیین مناطق حساس و مستعد لغزش، زمینه‌ای برای برنامه‌‌های پایدارسازی دامنه‌ها و کاهش خسارات احتمالی فراهم می‌آورد. در حوضۀ آبریز حبله‌رود از شبکه‌های عصبی مصنوعی و منطق فازی (FL) به عنوان یکی که از روش‌های تحلیل تصمیم‌گیری چند معیاره مبتنی‌بر ArcGIS در ارزیابی علمی نواحی مستعد زمین‌لغزش، استفاده شده است. در این زمینه از نرم‌افزارهای MATLAB، IDRISI وArcGIS بهره گرفته شد. بعد از تهیۀ نقشه‌های حساسیت زمین‌لغزش، پهنه‌های مستعد پیش‌بینی شده توسط منطق فازی و شبکۀ عصبی مصنوعی پرسپترون چندلایه (MLP-ANN) ، با بانک اطلاعاتی (نقشۀ پراکنش) زمین‌لغزش‌های حوضه مقایسه شدند. نتایج، بیانگر هم‌پوشانی خوب بین پهنه‌های مستعد پیش‌بینی شده توسط شبکۀ عصبی مصنوعی پرسپترون چندلایه و برداشت‌های صحرایی زمین‌لغزش می‌باشد. نهایتاً، عملکرد روش‌های مختلف در تولید نقشه‌های حساسیت زمین‌لغزش با استفاده از شاخص‌های صحت‌سنجی "جمع مطلوبیت (Qs)" و "منحنی مشخصۀ عملکرد سیستم (ROC)" با یکدیگر مقایسه شد تا روش مطلوب و کاربردی برای مدیریت خطر زمین لغزش حوضه تعیین شود. با تحلیل نقشه‌های پهنه‌بندی و با توجه به مقادیر جمع مطلوبیت و مقدار "سطح زیر منحنی (AUC)" حاصله مشاهده می‌شود که مقدار Qs (1.6299) و AUC (0.806- خیلی خوب) حاصل از MLP-ANN، بیشتر از مقداری است که برای نقشه‌های‌ حساسیت حاصل از عملگرهای مختلف FL محاسبه شده است.

کلیدواژه‌ها

موضوعات

کتابنگاری
آقانباتی، س. ع.، 1383- زمین­شناسی ایران، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، 708 صفحه.
درویش­زاده، ع.، 1370- زمین­شناسی ایران، انتشارات نشر دانش امروز، 908 صفحه.
شریعت جعفری، م.، 1388- پهنه­بندی خطر ریسک ویژه زمین­لغزش در حوزه­های بحرانی (البرز مرکزی)، سازمان مدیریت بحران کشور، کارگروه تخصصی زلزله و لغزش لایه­های زمین، 95 صفحه.
فاطمی عقدا، س. م.، ساریخانی، ر.، و تشنه لب، م .، 1382- پهنه­بندی خطر رانش زمین در منطقه طالش با استفاده از سیستم­های هوشمند (شبکه­های عصبی مصنوعی پرسپترون)، مجله زمین­شناسی مهندسی دانشگاه خوارزمی تهران، جلد اول، شماره 2، 192-179. http://jeg.khu.ac.ir/article-1-310-fa.html.
کورکی نژاد، م.، اونق، م.، و سپهری، ع.، 1384- مقایسه کارائی دو مدل پهنه­بندی خطر زمین­لغزش (حائری و مورا) در آبخیز سیاه رودبار گرگان، فصلنامه علوم کشاورزی و منابع طبیعی، سال دوازدهم، شماره 3 (پیاپی 47)، مرداد - شهریور 1384، صفحات 99-91.
منهاج، م. ب.، 1393- هوش محاسباتی- جلد اول: مبانی شبکه های عصبی، انتشارات دانشگاه صنعتی امیرکبیر، 716 صفحه.
 
References
Ahmed, B., 2015- Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh, Landslides, 12(6), 1077–1095. https://doi.org/10.1007/s10346-014-0521-x .
Bagheri, V., Uromeihy, A., and Fatemi Aghda, S. M., 2018- Evaluation of ANFIS and LR models for seismic rockfalls’ susceptibility mapping: a case study of Firooz Abad-Kojour, Iran, Earthquake (2004), Environmental earth sciences, 77(24), 800–823. https://doi.org/10.1007/s12665-018-7983-4.
Bagheri, V., Uromeihy, A., and Fatemi Aghda, S.M., 2019a- Predicting the probability of rockfalls occurrence caused by the earthquake of Changureh-Avaj in 2002 using LR, MLP, and RBF methods, Bulletin of Engineering Geology and the Environment, 78(5), 3119–3141. https://doi.org/10.1007/s10064-018-1323-5.
Bagheri, V., Uromeihy, A., and Fatemi Aghda, S. M., 2019b- A Comparison Among ANFIS, MLP, and RBF Models for Hazard Analysis of Rockfalls Triggered by the 2004 Firooz Abad-Kojour, Iran, Earthquake, Geotechnical and Geological Engineering, 37(4), 3085–3111. https://doi.org/10.1007/s10706-019-00827-y.
Bagheri, V., Uromeihy, A., and Razifard, M., 2017- Evaluation of MLP and RBF methods for hazard zonation of landslides triggered by the Twin Ahar-Varzeghan earthquakes, Geotechnical and Geological Engineering, 35(5), 2163–2190. https://doi.org/10.1007/s10706-017-0236-6.
Daneshvar, M. R. M., 2014- Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran, Landslides, 11(6), 1079–1091. https://doi.org/10.1007/s10346-013-0458-5.
Eisbacher, G.H., and Clague, J.J., 1984- Destructive mass movements in high mountains: hazard and management, Geological Survey of Canada, 230 pp.  https://doi.org/10.1130/0091-7613(1985)13<749b:BR>2.0.CO;2.
Ercanoglu, M., and Gokceoglu, C., 2002- Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environmental geology, 41(6), 720–730. https://doi.org/10.1007/s00254-001-0454-2.
Eslami, M., Shadfar, S., Mohammadi-Torkashvand, A., and Pazira, E., 2019- Assessment of density area and LNRF models in landslide hazard zonation (Case study: Alamout watershed, Qazvin Province, Iran), Acta Ecologica Sinica, 39(2), 173–180. https://doi.org/10.1016/j.chnaes.2018.08.001.
Fang, Z., Wang, Y., Peng, L., and Hong, H., 2020- Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping, Computers & Geosciences, 139, 104470. https://doi.org/10.1016/j.cageo.2020.104470.
Fatemi Aghda, S. M., and Bagheri, V., 2015- Evaluation of earthquake-induced landslides hazard zonation methods: a case study of Sarein, Iran, earthquake (1997), Arabian Journal of Geosciences, 8(9), 7207–7227. https://doi.org/10.1007/s12517-014-1658-6.
Fatemi Aghda, S. M., Bagheri, V., and Razifard, M., 2018- Landslide susceptibility mapping using fuzzy logic system and its influences on mainlines in Lashgarak region, Tehran, Iran, Geotechnical and Geological Engineering, 36(2), 915–937. https://doi.org/10.1007/s10706-017-0365-y.
Fatemi Aghda, S. M., Giamian, J., and Eshgheli Farahani, A., 2006- Investigation landslide hazard using Fuzzy logic (case study: Roudbar area), J. Science Tehran University, 31, 43- 64. https://doi.org/10.1007/s10706-017-0365-y.
Feizizadeh, B., Blaschke, T., Tiede, D., and Moghaddam, M. H. R., 2017- Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes, Geomorphology, 293, 240–254. https://doi.org/10.1016/j.geomorph.2017.06.002.
Florina, C. R., 2013- Climatic dysfunctional ties observed with the aid of NDMI and SAVI indices in the LEU-ROTUNDA and DĂBULENI plains, Academic Journal of the Air & Water Components of the Environment / Aerul si Apa Compone, 500–507. ProQuest document ID 1372764873.
Gee, M. D., 1992- Classification of landslide hazard zonation methods and a test of predictive capability, In Proc. 6th International Symposium on Landslides, Christchurch, New Zealand, 2, 947–952. http://pascal-francis.inist.fr/vibad/index.php?action =getRecordDetail&idt=6462876.
Gheshlaghi, H. A., and Feizizadeh, B., 2017- An integrated approach of analytical network process and fuzzy based spatial decision-making systems applied to landslide risk mapping, Journal of African Earth Sciences, 133, 15–24. https://doi.org/10.1016/j.jafrearsci.2017.05.007.
Hagan, M. T., Demuth, H. B., Beale, M. H., and Jesús, O. D., 2014- Neural Network Design, Martin Hagan (2 edition), 1012 pp. ISBN-13: 978-0971732117.
He, X., Hong, Y., Yu, X., Cerato, A. B., Zhang, X., and Komac, M., 2014- Landslides susceptibility mapping in Oklahoma state using GIS-based weighted linear combination method, In Landslide science for a safer geoenvironment, Springer, Cham, 371–377. https://doi.org/10.1007/978-3-319-05050-8_58.
Hong, H., Ilia, I., Tsangaratos, P., Chen, W., and Xu, C., 2017- A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China, Geomorphology, 290, 1–16. https://doi.org/10.1016/j.geomorph.2017.04.002.
Jaboyedoff, M., Crosta, G. B., and Stead, D., 2011- Slope tectonics: a short introduction, Geological Society, London, Special Publications, 351(1), 1–10. https://doi.org/10.1144/SP351.1.
Jin, S., and Sader, S. A., 2005- Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances, Remote Sensing of Environment, 94(3), 364–372. https://doi.org/10.1016/j.rse.2004.10.012.
Keefer, D. K., 1984- Landslides caused by earthquakes, Geological Society of America Bulletin, 95(4), 406–421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2.
Lee, S., 2007- Application and verification of fuzzy algebraic operators to landslide susceptibility mapping, Environmental Geology, 50, 847–855. https://doi.org/10.1007/s00254-006-0491-y.
Leonardi, G., Palamara, R., and Cirianni, F., 2016- Landslide susceptibility mapping using a fuzzy approach, Procedia engineering, 161, 380–387. https://doi.org/10.1016/j.proeng.2016.08.578.
Mandal, B., and Mandal, S., 2018- Analytical hierarchy process (AHP) based landslide susceptibility mapping of Lish river basin of eastern Darjeeling Himalaya, India, Advances in Space Research, 62(11), 3114–3132. https://doi.org/10.1016/j.asr.2018.08.008.
Mathew, J., Jha, V. K., and Rawat, G. S., 2009- Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method, Landslides, 6(1),17–26. https://doi.org/10.1007/s10346-008-0138-z.
Miles, S. B., and Keefer, D. K., 2007- Comprehensive areal model of earthquake-induced landslides: technical specification and user guide, U.S. Geological Survey Open-File Report, 1072, 69 pp. https://doi.org/10.3133/ofr20071072
Mohammady, M., Pourghasemi, H. R., and Pradhan, B., 2012- Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models, Journal of Asian Earth Sciences, 61, 221–236. https://doi.org/10.1016/j.jseaes.2012.10.005.
Moradi, H.R., Poorghasemi, H.R., Mohammadi, M., and Mahdavifar, M.R., 2010- Landslide hazard zonation using Fuzzy Gamma operator (case study: Haraz watershed), Environmental Sciences journal, 7(4), 129–142. 10.4103/2008-7802.183652.
Nefeslioglu, H. A., Gokceoglu, C., and Sonmez, H., 2008- An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps, Engineering Geology, 97(3), 171–191. https://doi.org/10.1016/j.enggeo.2008.01.004.
Norusis, M. J., 1994- SPSS Advanced Statistics 6.1, SPSS Company, Chicago, Illinois, 606 pp. 0132000652, 9780132000659.
Park, J. Y., Lee, S. R., Lee, D. H., Kim, Y. T., and Lee, J. S., 2019- A regional-scale landslide early warning methodology applying statistical and physically based approaches in sequence, Engineering Geology, 260, 105193. https://doi.org/10.1016/j.enggeo.2019.105193.
Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., and Moezzi, K. D., 2012a- Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran, In Terrigenous mass movements. Springer, Berlin, Heidelberg, 23–49. https://doi.org/10.1007/978-3-642-25495-6_2.
Pourghasemi, H. R., Pradhan, B., and Gokceoglu, C., 2012b- Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran, Natural hazards, 63(2), 965–996. https://doi.org/10.1007/s11069-012-0217-2.
Pradhan, B., and Lee, S., 2010- Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia, Landslides, 7(1), 13-30. https://doi.org/10.1007/s10346-009-0183-2.
Pradhan, B., 2013- A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Computers & Geosciences, 51, 350–365. https://doi.org/10.1016/j.cageo.2012.08.023.
Pradhan, B., Sezer, E. A., Gokceoglu, C., and Buchroithner, M. F., 2010- Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia), IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4164–4177. 10.1109/TGRS.2010.2050328.
Regmi, N. R., Giardino, J. R., McDonald, E. V., and Vitek, J. D., 2014- A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA, Landslides, 11(2), 247–262. https://doi.org/10.1007/s10346-012-0380-2.
Ryan, L., 1997- Creating a normalized difference vegetation index (NDVI) image using multispec, University of New Hampshire, 65pp. http://creativecommons.org/licenses/by-nc-nd/4.0/.
Sarkar, S., Kanungo, D. P., and Mehrotra, G. S., 1995- Landslide hazard zonation: a case study in Garhwal Himalaya, India, Mountain Research and Development, 301-309. https://www.jstor.org/stable/3673806.
Shahri, A. A., Spross, J., Johansson, F., and Larsson, S., 2019- Landslide susceptibility hazard map in southwest Sweden using artificial neural network, CATENA, 183, 104225. https://doi.org/10.1016/j.catena.2019.104225.
Wang, Y., Fang, Z., Wang, M., Peng, L., and Hong, H., 2020a- Comparative study of landslide susceptibility mapping with different recurrent neural networks, Computers & Geosciences, 138, 104445. https://doi.org/10.1016/j.cageo.2020.104445.
Wang, Yumiao, Luwei Feng, Sijia Li, Fu Ren, and Qingyun, Du., 2020b- A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China, CATENA, 188, 104425. https://doi.org/10.1016/j.catena.2019.104425
Yesilnacar, E. K., 2005- The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey, PhD Thesis, Department of Geomatics the University of Melbourne, 423 pp. https://doi.org/10.1007/1-4020-2409-6_1.