نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه زمین‌شناسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

پیش‌بینی میزان هجوم آب‌های زیرزمینی به تونل‌های در حال حفر، یکی از مهمترین مشکلات پروژه‌های تونلی است. روش‌های تجربی و تحلیلی بسیاری وجود دارند که تخمینی از آب ورودی به تونل می دهند، اما دقت آنها همواره پایین است. نفوذپذیری و بار آبی از مهمترین فاکتورهای تعیین کننده آب ورودی به تونل هستند. بدلیل پیچیدگی‌های شرایط زمین‌شناسی و آب‌زمین‌شناسی سازندهای سخت، بایستی عوامل دیگری نیز در تخمین آب ورودی به تونل مدنظر قرار گیرد. در این مقاله، برای اولین بار، طبقه‌بندی مقاومت ژئوموفولوژیکی توده سنگ (Geomorphological Rock Mass Strength (GRMS)) به عنوان معیاری در تخمین آب ورودی به تونل‌ها مد نظر قرار گرفت. داده‌های مرتبط با دو تونل که در شرایط زمین‌شناسی متفاوتی حفاری شده اند، جهت تاثیر این طبقه‌بندی در آب ورودی به تونل مورد استفاده قرار گرفت. نتایج این تحقیق نشان داد که در هر دو تونل، معیار فوق، انطباق قابل توجهی با میزان آب ورودی به تونل‌ها داشته و می‌تواند از این پس در تخمین آب ورودی به تونل مورد توجه قرار گیرد.

کلیدواژه‌ها

موضوعات

کتابنگاری
مرسلی، م.، نخعی، م.، رضایی، م.، ناصری، ح.، حسن پور، ج.، 1397- مقایسه روش‌ها و متغیرهای مؤثر در آب ورودی به تونل‌های سازندهای سخت، تونل انتقال آب سد کرج به تهران، نشریه علوم زمین، بهار 97، سال بیست و هفتم، شماره 107 ، صفحه 113 تا 122.
 
 
References
Brassington, F.C., 1986- The inter-relationship between changes in groundwater conditions and engineering construction, Quarterly Journals of Engineering Geology and Hydrogeology, doi: 10.1144/GSL.ENG.1986.003 .01.04.
Butscher, C., 2012- Steady-state groundwater inflow into a circular Tunnel, Tunnelling and Underground Space Technology, Volume 32, November, Pages 158–167, doi.org/10.1016/j.tust.2012.06.007.
Cesano, D., Bagtzoglou, A.C., Olofsson, B., 2003- Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction in underground excavations: the heterogeneity index, Tunnelling and Underground Space Technology 18, 19–34., doi.org/10.1016/S0886-7798(02)00098-6.
Cesano, D., Olofsson, B., Bagtzoglou, A., 2000- Parameters Regulating Groundwater Inflows into Hard Rock Tunnels--a Statistical Study of the Bolmen Tunnel in Southern Sweden, Tunnelling and Underground Space technology, Vel. 15, No. 2, pp. 153-165, doi.org/10.1016/S0886-7798(00)00043-2.
Chiocchini, U., and Castaldi, F., 2011- The impact of groundwater on the excavation of Tunnels in two different hydrogeological settings in central Italy, Hydrogeology Journal, 19: 651–669, doi.org/10.1007/s10040-010-0702-1.
Coli, N., Pranzini, G., Alfi, A., Boerio, V., 2008- Evaluation of Rock-Mass Permeability Tensor and Prediction of Tunnel Inflows by Means of Geostructural Surveys and Finite Element, Engineering Geology, 02812; No of Pages 11, doi.org/10.1016/j.enggeo.2008.05.002.
Dehghan, A.N., Goshtasbi, K., Ahangari, K., Jin, Y., 2015- Mechanism of fracture initiation and propagation using a tri-axial hydraulic fracturing test system in naturally fractured reservoirs, European Journal of Environmental and Civil Engineering, doi.org/10.1080/19648189.2015.1056384.
Demattis, A., Kalamaras, G., Eusebio, A., 2001- A system approach for evaluating spring drawdown due to Tunnelling, Progress in Tunnelling, Milan, Italy.
Farhadian, H., Katibeh, H., Huggenberger, P., 2016- Empirical model for estimating groundwater flow into Tunnel in discontinuous rock masses, Environmental Earth Science 75:471, DOI 10.1007/s12665-016-5332-z.
Farhadian, H., Nikvar Hassani, A., Katibeh, H., 2016- Groundwater Inflow Assessment to Karaj Water Conveyance Tunnel, Northern Iran, KSCE Journal of Civil Engineering 0000- 000-:1-10, DOI 10.1007/s12205-016-0995-2.
Fernandez, G., Moon, J., 2010- Excavation-induced hydraulic conductivity reduction around a Tunnel – Part 2: Verification of proposed method using numerical modeling, Tunnelling  and Underground Space Technology, Volume 25, Issue 5, September 2010, Pages 567-574, doi.org/10.1016/j.tust.2010.04.001.
Font-Capo, J 2012- Interaction between groundwater and TBM Tunnel Boring Machine- excavated Tunnels, PhD Thesis, Dept Geotechnical Engineering and Geosciences, Universitat Politecnica de Catalunya, UPC-BarcelonaTech, Spain.
Ford, D.C., and Williams, P.W., 2007- Karst geomorphology & hydrology. Chapman & Hall.
Frough, O., Torabi, SR., Tajik, M., 2012- Evaluation of TBM utilization using rock mass rating system: a case study of Karaj-Tehran water conveyance Tunnel, Journal of mining and environmental, Vol. 3, No. 2, 2012, 89-98, doi: 10.22044/JME.2012.86.
Gattinoni, P., Scesi, L., 2010- An empirical equation for Tunnel inflow assessment: application to sedimentary rock masses, Hydrogeology Journal, Volume 18, Number 8, Page 1797, DOI:10.1007/s10040-010-0674-1.
Hassanpour, J., Rostami, J., 2010- Predicting TBM performance in second lot of Karaj Water Conveyance Tunnel KARAJ TUNNEL-, Rock Engineering in Difficult Ground Conditions – Soft Rocks and Karst – Vrkljan ed-©2010 Taylor and Francis Group, London, doi.org/10.1007/s00603-009-0060-2.
Heuer, RE., 2001- Estimating Rock tunnel water inflow. Geotechnical consulting McHenry.
Katibeh, H., and Aalianvari, A., 2009- Development of a new method for tunnel site rating from groundwater hazard point of view, Journal of applied sciences 9 (8): 1496-1502.
Kolymbas, D., and Wagner, P., 2007- Groundwater ingress to tunnels, The extact analytical solution, Tunneling and Underground Space Technology 22 (2007) 23-27, doi.org/10.1016/j.tust.2006.02.001.
Lachassagne, P, Marechal, J., Bienfait, P., Lamotte, C., 2015- Computing the Water Inflows Discharge and Assessing the Impacts of Tunnels Drilled in Hard Rocks: The A89 France- Motorway Case Study, Engineering Geology for Society and Territory, volume 3. Lei, S., 1999- an analytical solution for steady flow into a Tunnel. Ground Water 37, 23–26, doi.org/10.1007/978-3-319-09054-2_119.
Le Mensil, M., Moussa, R., Charlier, J.B., Caballero, Y., 2020- Impact of karst areas on runoff generation, lateral flow and interbasin groundwater flow at the storm- event timescale, Hydrology and earth system sciences, Doi: 10.5194/hess-2020-229, doi.org/10.5194/hess-25-1259-2021.
Mabee, S. B., Curry, P.J., and Hardcastle, K., 2002- Correlation Of Lineaments To Groundwater Inflows In A Bedrock Tunnel, Vol. 40, No 1-Groundwater- Pages 37- 43.
Milanovic, P., 2007- Nowsoud water conveyance Tunnel project, Mission Report, Iran Water and Power Resources Development Company.
Mirmehrabi, H., Hassanpour, J., Morsali, M., Tarigh Azali, S., 2008- Experiences gained from gas and water inflow toward the Tunnel, Case Study: Aspar Anticline, Kermanshah, Iran, 5th Asian Rock Mechanics Symposium, 24-26 November 2008, Tehran. Iran.
Moon, J., Fernandez, G., 2010- Effect of Excavation-Induced Groundwater Level Drawdown on Tunnel Inflow in a Jointed Rock Mass, Engineering Geology, Volume 110, Issues 3-4, 9 February 2010, Pages 33-42, doi.org/10.1016/j.enggeo.2009.09.002.
Morsali, M. and Rezaei, M., 2017- Assessment of H2S emission hazards into tunnels: the Nosoud tunnel case study from Iran, journal of Environmental Earth Sciences, DOI: 10.1007/s12665-017-6493-0.
Morsali, M., Nakhaei, M., Rezaei. M., Nasery, H., and Hassanpour, J., 2017- A New Approach of Water head estimation based on water inflow into the Tunnel Case study: Karaj water conveyance Tunnel-, Quarterly Journal of Engineering Geology and Hydrogeology. DOI: 10.1144/qjegh2016-015.
Nilsen, B., 2014- Characteristics of water ingress on Norwegian subsea Tunnels, Rock Mechanic and Rock Engineering, May 2014, Volume 47, Issue 3, pp 933-945, doi.org/10.1007/s00603-012-0300-8.
Raymer, J.H., 2005- Groundwater inflow into hard rock Tunnels: a new look at inflow equations. In Proceeding of the rapid excavation and Tunnelling conference RETC-. Society of Mining and Metallurgy Inc., Society of Mining and Metallurgy Inc pp. 457-468.
Sabale, P.D., and Meshram, S.A., 2012- Effect of dyke structure on groundwater in between Sangamner and Sinnar area: A Case study of Bhokani dyke, International Journal of Computational Engineering Research, Vol. 2, and Issue 4.
Saberinasr, A., Morsali, M., Hashemnejad, A., Hassanpour, J., 2019- Determining the origin of groundwater elements using hydrochemical data case study: Kerman water conveyance tunnel-, Environmental Earth Sciences, 2019- 78:198, doi:org/10.1007/s12665-019-8182-7.
Sharifzadeh, M., and Javadi, M., 2017- Groundwater and Underground Excavations: from Theory to Practice [Series: Rock Mechanics and Engineering, volume 3, Chapter 10, Editor: Xia-Ting Feng; CRC Press].
Spross, J., and Larsson, S., 2014- On the observational method for groundwater control in the Northern Link tunnel project, Stockholm, Sweden, Bulletin of Engineering Geology and the Environment, ISSN 1435-9529, E-ISSN 1435-9537, Vol. 73, no 2, 401-408 p.
West, G., 1983- Comparisons between real and predicted geology in Tunnels: examples from recent cases, Quarterly Journals of Engineering Geology and Hydrogeology, doi: 10.1144/GSL.ENG.1983.016.02.04.
Yang, F., Lee, C., Kung, W., Yeh, H., 2009- The impact of Tunnelling construction on the hydrogeological environment of Tseng-Wen Reservoir Transbasin Diversion Project” in Taiwan, Engineering Geology, vol.101, pp. 39-58, DOI:10.1016/j.enggeo.2008.07.012.
Yoo, C., 2004- Interaction between Tunnelling and groundwater, Tunnelling and Underground Space Technology 19 2004- 523–524, DOI:10.1061/(ASCE)1090-0241(2005)131:2(240).
Yudan, J., Ranjith, P., Verma, A., Choi, S., Haque, A., 2006- A parametric study on flow of groundwater in fractured porous media: 3D simulation, 4th Asian Rock Mechanics Symposium, Singapore.
Zarei, H.R., Uromeihy, A., Sharifzadeh, M., 2011- Evaluation of high local groundwater inflow to a rock Tunnel by characterization of geological features, Tunnelling  and Underground Space Technology, Volume 26, Issue 2, March 2011, Pages 364-373, doi.org/10.1016/j.tust.2010.11.007.