نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی محیط زیست، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشکده زمین‌شناسی، دانشکدگان علوم، دانشگاه تهران، تهران، ایران

چکیده

رشد جمعیت و افزایش شهرنشینی، انسان را در معرض آلاینده‌های شهری بیشتری قرار می‌دهد، به‌ویژه در شرایطی که مجبور به گذراندن مدتی طولانی در فضاهای بسته و با تهویه اندک هستند. این مطالعه، نخستین پژوهش در باره آلاینده‌های غیرآلی درون‌ساختمانی شهر تهران است که با استفاده از شاخص‌های زمین‌شیمیایی، شدت آلودگی عناصر بالقوه سمی را در غبارهای درون ساختمانی تخمین می‌زند.  از نواحی شلوغ و مرکزی شهر تهران، 31 نمونه غبار به روش نافعال از درون ساختمان‌های مسکونی و اداری برداشت و پس از آماده‌سازی، تجزیه شیمیایی با استفاده از طیف‌سنجی جرمی پلاسمای جفت‌شده القایی در آزمایشگاه دانشگاه روویرا شهر تاراگونا اسپانیا انجام شد. شاخص‌های زمین‌شیمیایی منفرد شامل ضریب آلودگی، شاخص زمین‌انباشت و ضریب غنی‌شدگی، و شاخص‌های تجمعی شاخص بار آلودگی و شاخص پتانسیل ریسک بوم‌شناختی (اکولوژیک) برای تعیین شدت آلودگی در نمونه‌های غبار محاسبه شدند. نتایج آنالیز عنصری نشان داد که عناصر آرسنیک، کادمیم، مس، جیوه، سرب و روی در غبار درون ساختمانی شهر تهران غلظت های بالاتری نسبت به برخی شهرهای جهان نشان می‌دهند. در مقابل، عناصر کبالت، کروم، نیکل و وانادیم، مقادیر اندکی را نشان می‌دهند. این یافته توسط شاخص‌های تجمعی و شاخص منفرد ضریب آلودگی  تایید شد،  در حالی که شاخص‌های دیگر سطح پایین تا متوسط آلودگی را نشان می‌دهند. بر اساس نتایج غلظت عناصر در نمونه‌ها می‌توان به این نتیجه رسید که شاخص‌های با سطح متوسط تا پایین آلودگی در تحلیل حاضر قابل اطمینان نبوده و توصیه نمی‌شوند.

کلیدواژه‌ها

موضوعات

ارسلانی، ف.، علیجانی، ب.، اکبری، م.، محمدخان، ش.، 1399، بررسی عناصر سنگین (Cd, Cr, Cu, Ni, Pb) موجود در غبار ریزشی شهر تهران. پژوهش‌های دانش زمین. سال یازدهم، شماره 44، ص 15-36. http://doi.org/20.1001.1.20088299.1399.11.4.2.7.
دهقانی، ش.، 1396، زمین‌شیمی زیست‌محیطی، گونه‌پذیری و ارزیابی خطر سلامتی برخی فلزات بالقوه ‏سمناک در غبار خیابان مناطق با بار ترافیکی سنگین در کلان‌شهر تهران. رساله دکتری زمین‌شناسی ‏زیست‌محیطی، دانشگاه شیراز. 300 ص.‏
علی طالشی، م.ص.، معین‌الدینی، م.، فیض‌نیا، س.، اسکوئیزاتو، الف.، 1398، آلودگی فلزات سنگین در ذرات غبار خیابانی شهر تهران در سال 1397. ارزیابی غنای فلزی و درجه آلودگی. مجله مهندسی بهداشت محیط. سال 7 شماره 2 ص 179-194. .http://dx.doi.org/10.29252/jehe.7.2.179
مقدسی، پ.، یزدی، م.، بیاتی، الف.، 1394، ویژگی‌های زمین‌شیمیایی گرد و غبار میادین اصلی تهران. فصلنامه ‏علوم محیطی، دوره 3 شماره 1 ص 75-84.  http://dx.doi.org/10.29252/jehe.7.2.179.
یعقوبی، ز.، حسینی، ع.، نبی بیدهندی، غ.، شرافتی، الف.، 1401، ارزیابی ریسک اکولوژیک فلزات سنگین در خاک سطحی پارک‌های منتخب کلان‌شهر تهران بر اساس نمونه‌برداری سال 1400‏ محیط‌شناسی، دوره 48 شماره 2 ص 179-196. https://dorl.net/dor/20.1001.1.10258620.1401.48.2.2.7.
References
Abdulraheem, M. O., Adeniran, J. A., Ameen, H. A., Odediran, E. T., Yusuf, M. N. O., and Abdulraheem, K. A., 2022. Source identification and health risk assessments of heavy metals in indoor dusts of Ilorin, North central Nigeria. Journal of Environmental Health Science and Engineering, 1-16. https://doi.org/10.1007/s40201-021-00778-8.
Abrahim, G. M. S., and Parker, R. J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental monitoring and assessment, 136(1), 227-238. https://doi.org/10.1007/s10661-007-9678-2.
Adeniran, J. A., Araromi, D. O., Yusuf, R. O., Jimoda, L. A., Oke, E. O., and Sonibare, J. A., 2019. Analytical modeling of human exposure from short-term point source releases of aerosols from household spray products. Science and Technology for the Built Environment, 25(1), 83-90. https://doi.org/10.1080/23744731.2018.1499383.
Albanese, S., and Cicchella, D., 2012. Legacy problems in urban geochemistry. Elements, 8(6), 423-428. https://doi.org/10.2113/gselements.8.6.423.
Alekseenko, V., and Alekseenko, A., 2014. The abundances of chemical elements in urban soils. Journal of Geochemical Exploration, 147, 245-249. https://doi.org/10.1016/j.gexplo.2014.08.003.
Ali Talshi, M.S., Moinedini, M., Faiznia, S., Esquizato, A., 2019. Heavy metal contamination in street dust particles of Tehran city in 2018. Evaluation of metal richness and degree of contamination. Journal of Environmental Health Engineering. Year 7, No. 2, pp. 179-194. http://dx.doi.org/10.29252/jehe.7.2.179. (In Persian).
Alloway, B.J., 2013. Sources of Heavy Metals and Metalloids in Soils. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_2.
Alotaibi, M. O., Albedair, L. A., Alotaibi, N. M., Elobeid, M. M., Al-Swadi, H. A., Alasmary, Z., and Ahmad, M., 2022. Pollution indexing and health risk assessment of heavy-metals-laden indoor and outdoor dust in elementary school environments in Riyadh, Saudi Arabia. Atmosphere, 13(3), 464. https://doi.org/10.3390/atmos13030464.
Ariapak, S., Jalalian, A., and Honarjoo, N., 2022. Source identification, seasonal and spatial variations of airborne dust trace elements pollution in Tehran, the capital of Iran. Urban Climate, 42, 101049. https://doi.org/10.1016/j.uclim.2021.101049.
Arsalani, F., Alijani, B., Akbari, M., Mohammad Khan, Sh., 2020. investigation of heavy elements (Cd, Cr, Cu, Ni, Pb) present in fallout dust of Tehran city. Earth science research. Year 11, No. 44, pp. 15-36. http://doi.org/20.1001.1.20088299.1399.11.4.2.7. (In Persian).
Buljovčić, M., Živančev, J., Antić, I., and Đurišić-Mladenović, N., 2022. Heavy elements in indoor dust from Serbian households: pollution status, sources, and potential health risks. International Journal of Environmental Health Research, 1-11. https://doi.org/10.1080/09603123.2022.2128077.
Cao, S., Chen, X., Zhang, L., Xing, X., Wen, D., Wang, B., Qin, N., Wei, F., and Duan, X., 2020. Quantificational exposure, sources, and health risks posed by heavy metals in indoor and outdoor household dust in a typical smelting area in China. Indoor Air, 30(5), 872-884.  https://doi.org/10.1111/ina.12683.
Cao, S., Wen, D., Chen, X., Duan, X., Zhang, L., Wang, B., Oin, N., and Wei, F., 2022. Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town, China. Environmental Pollution, 293, 118551. https://doi.org/10.1016/j.envpol.2021.118551.
Cicchella, D., Zuzolo, D., Albanese, S., Fedele, L., Di Tota, I., Guagliardi, I., Thiombane, M., De Vivo, B., and Lima, A., 2020. Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. Journal of Geochemical Exploration, 213, 106519. https://doi.org/10.1016/j.gexplo.2020.106519.
Dehghani, S., 2017. environmental geochemistry, speciation and health risk assessment of some potentially toxic metals in street dust of areas with heavy traffic in Tehran metropolis. Doctoral thesis in bio-environmental geology, Shiraz University. 300 p. (In Persian).
Dehghani, S., Moore, F., Keshavarzi, B., and Beverley, A. H., 2017. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and environmental safety, 136, 92-103. https://doi.org/10.1016/j.ecoenv.2016.10.037.
Dehghani, S., Moore, F., Vasiluk, L., and Hale, B. A., 2018. The geochemical fingerprinting of geogenic particles in road deposited dust from Tehran metropolis, Iran: Implications for provenance tracking. Journal of Geochemical Exploration, 190, 411-423. https://doi.org/10.1016/j.gexplo.2018.04.011.
Doyi, I. N., Isley, C. F., Soltani, N. S., and Taylor, M. P., 2019. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environment International, 133, 105125. https://doi.org/10.1016/j.envint.2019.105125.
Gad, A., Saleh, A., Farhat, H. I., Dawood, Y. H., and Abd El Bakey, S. M., 2022. Spatial Distribution, Contamination Levels, and Health Risk Assessment of Potentially Toxic Elements in Household Dust in Cairo City, Egypt. Toxics, 10(8), 466. https://doi.org/10.3390/toxics10080466.
Gustafsson, Å., Krais, A. M., Gorzsás, A., Lundh, T., and Gerde, P., 2018. Isolation and characterization of a respirable particle fraction from residential house-dust. Environmental Research, 161, 284-290.  https://doi.org/10.1016/j.envres.2017.10.049.
Hakanson, L., 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8.
Hodas, N., Loh, M., Shin, H. M., Li, D., Bennett, D., McKone, T. E.,  Jolliet, O.,  Weschler, C. J., Jantunen, M.,  Lioy, P., and Fantke, P., 2016. Indoor inhalation intake fractions of fine particulate matter: review of influencing factors. Indoor Air, 26(6), 836-856. https://doi.org/10.1111/ina.12268.
Hou, S., Zheng, N., Tang, L., Ji, X., Li, Y., and Hua, X., 2019. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environment International, 128, 430-437. https://doi.org/10.1016/j.envint.2019.04.046.
Janadeleh, H., Jahangiri, S., and Kameli, M. A., 2018. Assessment of heavy metal pollution and ecological risk in marine sediments (A case study: Persian Gulf). Human and Ecological Risk Assessment: An International Journal, 24(8), 2265-2274. https://doi.org/10.1080/10807039.2018.1443792.
Kabata-Pendias, A., 2011. Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press, Taylor and Francis Group. https://doi.org/10.1201/b10158.
Kafilat Adebola, B. A., Joseph Kayode, S., and Adebayo Akeem, O., 2018. Integrated assessment of the heavy metal pollution status and potential ecological risk in the Lagos Lagoon, South West, Nigeria. Human and Ecological Risk Assessment: An International Journal, 24(2), 377-397. http://dx.doi.org/10.1080/10807039.2017.1384694.
Khajooee, N., Modabberi, S., Khoshmanesh-Zadeh, B., Razavian, F., Gayà-Caro, N., Sierra, J., and Rovira, J., 2024. Contamination level, spatial distribution, and sources of potentially toxic elements in indoor settled household dusts in Tehran, Iran. Environmental Geochemistry and Health, 46(2), 56. https://doi.org/10.1007/s10653-023-01838-8.
Koehler, K., Good, N., Wilson, A., Mölter, A., Moore, B. F., Carpenter, T., Peel, J. L., and Volckens, J., 2019. The Fort Collins commuter study: Variability in personal exposure to air pollutants by microenvironment. Indoor air, 29(2), 231-241. https://doi.org/10.1111/ina.12533.
Kowalska, J. B., Mazurek, R., Gąsiorek, M., and Zaleski, T., 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental geochemistry and health, 40(6), 2395-2420. https://doi.org/10.1007/s10653-018-0106-z.
Li, H. H., Chen, L. J., Yu, L., Guo, Z. B., Shan, C. Q., Lin, J. Q., Gu, Y. G., Yang, Z. B., Yang, Y. X., Shao, J. R., Zhu, X. M.,  and Cheng, Z., 2017. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Science of the Total Environment, 586, 1076-1084. https://doi.org/10.1016/j.scitotenv.2017.02.092.
McLennan, S. M., 1994. Rare earth element geochemistry and the “tetrad” effect. Geochimica et Cosmochimica Acta, 58(9), 2025-2033. https://doi.org/10.1016/0016-7037(94)90282-8.
Meza-Figueroa, D., De la O-Villanueva, M., and De la Parra, M. L., 2007. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41(2), 276-288.  https://doi.org/10.1016/j.atmosenv.2006.08.034.
Moghadasi, P., Yazdi, M., Bayati, A., 2015. Geochemical characteristics of dust from the main squares of Tehran. Environmental Sciences Quarterly, Volume 3, Number 1, pp. 75-84. http://dx.doi.org/10.29252/jehe.7.2.179. (In Persian).
Mohammadyan, M., Alizadeh-Larimi, A., Etemadinejad, S., Latif, M. T., Heibati, B., Yetilmezsoy, K., Abdul-Wahab, S. A., and Dadvand, P., 2017. Particulate air pollution at schools: Indoor-outdoor relationship and determinants of indoor concentrations. Aerosol and Air Quality Research, 17(3), 857-864. https://doi.org/10.4209/aaqr.2016.03.0128.
Muller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.
Odediran, E. T., Adeniran, J. A., Yusuf, R. O., Abdulraheem, K. A., Adesina, O. A., Sonibare, J. A., and Du, M., 2021. Contamination Levels, Health Risks and Source Apportionment of Potentially Toxic Elements in Road Dusts of a Densely Populated African City. Environmental Nanotechnology, Monitoring and Management, 100445. doi:https:// doi. org/ 10. 1016/j. enmm.2021.100445.
Rehman, A., Liu, G., Yousaf, B., Zia-ur-Rehman, M., Ali, M. U., Rashid, M. S., Farooq, M. R., and Javed, Z., 2020. Characterizing pollution indices and children health risk assessment of potentially toxic metal(oid)s in school dust of Lahore, Pakistan. Ecotoxicology and Environmental Safety, 190, 110059. https://doi.org/10.1016/j.ecoenv.2019.110059.
Rudnick, R. L., and Gao, S., 2003. Composition of the continental crust, Treatise on Geochemistry, 3, 1–64.
Shi, T., and Wang, Y., 2021. Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of the Total Environment, 755, 142367. https://doi.org/10.1016/j.scitotenv.2020.142367.
Sutherland, R. A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627. https://doi.org/10.1007/s002540050473.
Tashakor, M., and Modabberi, S., 2021. Human Health Risks Associated with Potentially Harmful Elements from Urban Soils of Hamedan City, Iran. Pollution, 7(3), 709-722. https://doi.org/10.22059/poll.2021.318496.1015.
Tashakor, M., Behrooz, R. D., Asvad, S. R., and Kaskaoutis, D. G., 2022. Tracing of Heavy Metals Embedded in Indoor Dust Particles from the Industrial City of Asaluyeh, South of Iran. International Journal of Environmental Research and Public Health, 19(13), 7905. https://doi.org/10.3390/ijerph19137905.
Taylor, S. R., and McLennan, S. M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford. 312p. https://doi.org/10.1002/gj.3350210116.
Taylor, S. R., and McLennan, S. M., 2001. Chemical composition and element distribution in the Earth’s crust. Encyclopedia of physical science and technology, 312, 697-719. https://doi.org/10.1016/B0-12-227410-5/00097-1.
Tomlinson, D. L., Wilson, J. G., Harris, C. R., and Jeffrey, D. W., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeres untersuchungen, 33(1), 566-575. https://doi.org/10.1007/BF02414780.
Turekian, K. K., and Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2), 175-192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
Wedepohl, K. H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2.
Wong, C. S., Li, X., and Thornton, I., 2006. Urban environmental geochemistry of trace metals. Environmental pollution, 142(1), 1-16.  https://doi.org/10.1016/j.envpol.2005.09.004.
Yaqoubi, Z., Hosseini, A., Nabi Bidhandi, G., Sherafati, A., 2022. Ecological risk assessment of heavy metals in the surface soil of selected parks of Tehran metropolis based on sampling in 1400. 196. https://dorl.net/dor/20.1001.1.10258620.1401.48.2.2.7. (In Persian).
Zhou, L., Liu, G., Shen, M., Liu, Y., and Lam, P. K., 2021. Characteristics of Indoor Dust in an Industrial City: Comparison with Outdoor Dust and Atmospheric Particulates. Chemosphere, 129952. https://doi.org/10.1016/j.chemosphere.2021.129952.
Zhou, L., Liu, G., Shen, M., and Liu, Y., 2022. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China. Chemosphere, 302, 134864. https://doi.org/10.1016/j.chemosphere.2022.134864.