زمین شناسی، ژئوشیمی و الگوی تشکیل کانسار سرب (نقره) دره امرود در کمان ماگمایی ارومیه- دختر، جنوب قهرود

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 کارشناسی ارشد، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

کانسار سرب (نقره) دره‌امرود در منطقه قهرود و در کمان ماگمائی ارومیه- دختر در واحد توف‌سیلیسی سبز- خاکستری رنگ و کریستال لیتیک توف با سن ائوسن‌میانی تا پسین رخ داده است. شکل‌هندسی پیکره معدنی عمدتاً بصورت چینه-کران و نامنظم، نیمه همخوان تا ناهمخوان بوده و ساخت و بافت غالب ماده معدنی از نوع نیمه توده‌ای، برشی، نواری و رگه- رگچه ای می‌باشد. کانی‌های اولیه و غالب در ماده معدنی شامل گالن، پیریت، کالکوپیریت و کانی‌های ثانویه بیشتر از نوع کوولیت، گوتیت و هماتیت هستند. کانی‌های باطله عمدتاً شامل اپیدوت، کلریت، کانی‌های رسی، کوارتز، کلسیت و باریت است. دگرسانی‌های عمده شامل اپیدوتی- کلریتی و سریسیتی می‌باشد. عدم شباهت الگوی عناصر نادر خاکی (REE) ماده معدنی در کانسار دره‌امرود با الگوی سنگ-های آتشفشانی میزبان در کمرپایین و کمربالای کانسار با مدل تشکیل بصورت جانشینی زیر کف دریا سازگار می باشد. آنومالی منفی Ce در مواد معدنی حاکی از نقش آب دریا در تشکیل کانسار است. بر اساس مطالعات ساختاری، چینه-شناسی، پتروگرافی، بافت و ساخت، کانی‌شناسی، دگرسانی و ژئوشیمیایی بنظر می‌رسد کانه‌زائی سرب (نقره) دره‌امرود بصورت سولفید ‌توده‌ای آتشفشان‌زاد (VMS) تیپ بایمدال فلسیک یا کوروکو رخ داده و ماده معدنی بصورت جانشینی در سنگ‌های آتشفشانی زیر کف دریا نهشته شده است. شایان ذکر است کانسار دره امرود اولین رخداد سولفید توده‌ای غنی از فلزات پایه و فقیر از باریت می‌باشد که در پهنه ارومیه- دختر معرفی می‌گردد و اهمیت اکتشاف اینگونه ذخایر در این پهنه را آشکار می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Geology, geochemistry and genesis of the Darreh Amrood Pb (Ag) deposit in the Urumieh-Dokhtar magmatic arc, south of Ghohrood

نویسندگان [English]

  • Fardin mousivand 1
  • Fayeq Hashemi 2
  • Mehdi Rezaei-Kahkhaei 1
  • Amir Pakizeh 2
1 Assistant Professor, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
2 M.Sc., Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

The Darreh Amrood Pb (Ag) deposit is located in south of Ghohrood, in the Urumieh-Dokhtar magmatic arc (UDMA). Host rockes to the deposit are Middle to Late Eocene grey-green siliceous tuff and crystal lithic tuff. Geometry of orebodies is stratabound, irregular, and semiconcordant to discordant to layering of the host rocks. Ore structures and textures are dominated by semi-massive to brecciated, banded and vein-veinlets. Main primary minerals are galena, pyrite and chalcopyrite, and secondary minerals are dominated by covelline, goethite and hematite. Gangue minerals are epidote, chlorite, sericite, clay minerals, quartz, calcite and barite. Wall rock alterations are dominated by epidote-chlorite and sericitic. The rare earth element (REE) pattern of ores is not similar to that of volcanic rocks in the footwall and hangingwall that is concordant with sub-seafloor replacement process for ore formation. Also Ce showed negative anomaly that can be attributed to Ce in the seawater. Also based on structural, stratigraphic, petrographic, textures, mineralogical, alteration and geochemical studies, it is inferred that the Pb (Ag) mineralization in the Darreh Amrood area occurred as bimodal felsic- or Kuroko-type volcanogenic massive sulfide (VMS) mineralization, and formed as sub-seafloor replacement. It should be noted that the Darreh Amrood deposit is the first recognition of base metal-rich and poor barite VMS mineralization in the UDMA.

کلیدواژه‌ها [English]

  • Darreh Amrood
  • Lead
  • Geochemistry
  • VMS
  • Urumieh-Dokhtar
کتابنگاری
آهنکوب، م.، 1382- بررسی پترولوژیکی و ژئوشیمیایی هاله دگرگونی توده گرانیتوییدی قهرود، پایان­نامه کارشناسی ارشد گرایش پترولوژی، دانشگاه اصفهان، ایران.
خلج­معصومی، م.، لطفی، م. و نظری، م.، 1389- تعیین مدل کانی‎سازی معدن تپه‎سرخ بیجگان دلیجان، استان مرکزی، فصلنامه تخصصی زمین و منابع، پیش شماره دوم، صص. 33 تا 43.
رادفر، ج.، علایی مهابادی، س. و هاشم­امامی، م.، 1372- نقشه زمین­شناسی100000/1 کاشان، سازمان زمین­شناسی و اکتشافات معدنی کشور.
قربانی، م.، 1381- زمین­شناسی اقتصادی، آثار و نشانه­های رخدادهای معدنی ایران، سازمان زمین­شناسی ایران (تهران)، 695 ص.
نظری، م.، یعقوب­پور، ع. و مدنی، ح.، 1370- کانسار باریت درین کاشان، چهارمین سمپوزیوم معدنکاری ایران، دانشگاه تربیت معلم. شماره1، صص.106 تا 125.
هاشمی، ف.، 1394- کانی­شناسی، زمین­شیمی و الگوی پیدایش کانسار باریت- سرب- مس ورندان در پهنه ارومیه- دختر، جنوب کاشان، پایان­نامه کارشناسی ارشد. دانشگاه صنعتی شاهرود. 231 ص.
هاشمی، ف.، موسیوند، ف. و رضایی­کهخائی، م.، 1396- افق­های کانه­دار، رخساره­های کانسنگ، کانی­شناسی، ژئوشیمی و الگوی تشکیل کانسار سولفید توده­ای آتشفشان­زاد (VMS) باریت- سرب- مس ورندان، جنوب­ غرب قمصر. مجله زمین شناسی اقتصادی، ج. 9، صص. 587 تا 616.
 
References
Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005- Convergence history across Zagros (Iran): constraints from collisional and earlier deformation, International journal of earth sciences, V. 94, No. 3, p. 401- 419.
Ahrens, L., 1953- The use of ionization potentials. II. Anion affinity and geochemistry, Geochim. Et Cosmochim. Acta, V. 4, p. 1- 29. https://doi.org/10.1016/0016-7037 (53)90046-5.
Alaminia, Z. and Sharifi, M., 2018- Geological, geochemical and fluid inclusion studies on the evolution of barite mineralization in the Badroud area of Iran. Ore Geology Reviews V. 92, p. 613- 626. https://doi.org/10.1016/j.oregeorev.2017.12.011.
‏Alavi, M., 1991- Tectonic map of the Middle East, scale 1:2,900,000, Geological Survey of Iran.
Alavi, M., 1994- Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics V. 229, p. 211- 238. https://doi.org/10.1016/0040-1951 (94)90030-2.
Alavi, M., 1996- Tectonostratigraphic synthesis and structural style of the Alborz Mountain system in northern Iran. J. Geodyn. V. 21, p. 1- 33. https://doi.org/10.1016/0264-3707 (95)00009-7.
Berberian, F., Muir, I. D., Pankhurst, R. J. and Berberian, M., 1982- Late Cretaceous and Early Miocene Andean type plutonic activity in northern Makran and Central Iran. J. Geol. Soc. London V. 139, p. 605- 614. https://doi.org/10.1144/gsjgs.139.5.0605.
Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran, Canadian journal of earth sciences, V. 18, No. 2, p. 210- 265. https://doi.org/10.1139/e81-163.
Campbell, I. H., Coad, P., Franklin, J. M., Gorton, M. P., Scott, S. D., Sowa, J. and Thurston, P. C., 1982- Rare earth elements in volcanic rocks associated with Cu-Zn massive sulphide mineralization: a preliminary report, Canadian Journal of Earth Sciences, V. 19, No. 3, p. 619- 623. https://doi.org/10.1139/e82-049.
Doyle, M. G. and Allen, R. L., 2003- Subsea-floor replacement in volcanic-hosted massive sulfide deposits, Ore Geology Reviews, V. 23, No. 3, p. 183- 222. https://doi.org/10.1016/S0169-1368 (03)00035-0.
Franklin, J. M., Gibson, H. L., Galley, A. G. and Jonasson, I. R., 2005- Volcanogenic massive sulfide deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, and J.P. Richards (Editors), Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, Colorado, pp. 523- 560.
Galley, A. G., Hannington, M. D. and Jonasson, I., 2007- Volca­nogenic massive sulphide deposits. In: Goodfellow, W.D., (Editors), a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Canada, V. 5, No. 1, p. 141- 161.
Ghorbani, M. R. and Bezenjani, R. N., 2011- Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc V. 20, p. 188- 202. https://doi.org/10.1111/j.1440-1738.2010.00757.x.
Goseph, L. and Graf, J. R., 1977- Rere earth element as hydrotermal treacers during the formation of massive sulfide deposit in volcanic rocks, Economic geology, V. 72, No. 4, p. 527- 548.
Graf, J. L., 1977- Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks, Economic Geology, V. 72, No. 4, p. 527- 548.
Hashemi, F., Mousivand, F. and Rezaei- kahkhaei, M., 2014- Volconogenic massive sulfide mineraliztion in the Kashan-Delijan region, Iran, First International Workshop on Tethyan Orogenesis and Metallogeny in Aisa, CUG University, Wuhan, China.
Koski, R. A. and Mosier, D. L., 2012- Deposit types and associated commodities In: Volcanogenic Massive Sulfide Occurrence Model, Shanks III.P.W.C. and Thurston. R., (eds.), USGS Scientific Investigations Report 2010-5070-C. p. 10- 21.
Mohajjel, M. and Fergusson, C. L., 2000- Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Structural geology, V. 22, No. 8, p. 1125- 1139. https://doi.org/10.1016/S0191-8141 (00)00023-7.
Nakamura, N., 1974- Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, V. 38, No. 5, p.757- 775. https://doi.org/10.1016/0016-7037 (74)90149-5.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008- Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380- 398. https://doi.org/10.1016/j.lithos.2008.09.008.
Piercey, S. J., 2009- Lithogeochemistry of volcanic rocks associated with volcanogenic sulphide deposits and applications to exploration, Submarine Volcanism and Mineralization: Modern through Ancient, (eds.) Cousens, B., Piercey, S.J., Geological Association of Canada, Short Course 29- 30 May 2008- Quebec City, Canada, p. 15- 40. https://www.researchgate.net/publication/257269237_Lithogeochemistry_of_volcanic_rocks_associated_with_volcanogenic_massive_sulfide_VMS_deposits_and_applications_to_exploration.
Piercey, S. J., 2015- A semipermeable interface model for the genesis of subseafloor replacement-type volcanogenic massive sulfide (VMS) deposits. Economic Geology 110: 1655- 1660. https://doi.org/10.2113/econgeo.110.7.1655.
Ruttner, A. and Stöcklin, J., 1967- Geological map of Iran, scale 1:1000000, Geological Survey of Iran.
Shanks, III. W. C. P. and Koski, R. A., 2012- Introduction. In: Volcanogenic Massive 100 Sulfide Occurrence Model, (eds.). Shanks, III.W. C. P. and Thurston, R., USGS Scientific Investigations Report 2010-5070-C. p. 4- 8.
Singer, D. A., 1986- Descriptive model of kuroko massive sulfide, In: Cox.D. P. And Singer.D.A., eds., Minerald eposimt odels: U.S. Geological Survey Bulletin, V. 1693, No. 1, p. 189- 194.
Solomon, M., Tornos, F., Large, R. R., Badham, J. N. P., Both, R. A. and Zaw, K., 2004- Zn-Pb-Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool- from black smoker-type sulphide deposition, Ore Geology Reviews, V. 25, No. 3, p. 259- 284. https://doi.org/10.1016/j.oregeorev.2004.01.003.
Spry, P. G., Peter, J. M. and Slack, J. F., 2000- Meta-exhalites as exploration guides to ore, In: Spry, P.G., Marshall, B. and Vokes, F. M., eds., Metamorphosed and metamorphic ore deposits: Reviews in Economic Geology, V. 11, No. 1, p. 163- 201.
Stampfli, G. M., Mosar, J., Favre, P., Pillevuit, A. and Vannay, J. C., 2001- Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East Mediterranean basin connection, Mémoires du Muséum national d'histoire naturelle, V. 186, No. 1243- 4442, p. 51- 108.‏
Taylor, C. D., Zierenberg, R. A., Goldforb, R. J., Kilburn, J. E., Seal, R. R. II. and Kleinkopf, M. D., 1995- Volcanic-associated massive sulfide deposits, United States Geological Survey, America, Open-File Report 95- 831, 8 pp.
Tornos, F., Peter, J. M., Allen, R. and Conde, C., 2015- Controls on the siting and style of volcanogenic massive sulphide deposits, Ore Geology Reviews V. 68, p. 142- 163. https://doi.org/10.1016/j.oregeorev.2015.01.003.
Urabe, T. and Marumo, K., 1991- A new model for Kuroko-type deposits of Japan, Episodes, V. 14, No. 3, p. 246- 251.
Whitney, D. L. and Evan, B. W., 2010- Abbreviations for names of rock-forming minerals, Journal of American Mineralogist, V. 95, p. 185- 187. https://doi.org/10.2138/am.2010.3371.