ژئوشیمی آپاتیت و رخداد انحلال-ته نشینی همگام در تشکیل کانی‌های عناصر نادر خاکی در کانسار گزستان، ایران مرکزی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا زمین شناسی اقتصادی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار زمین شناسی دانشکده علوم زمین دانشگاه شهید بهشتی

چکیده

کانسار مگنتیت-آپاتیت گزستان، در ایران مرکزی، در توالی آتشفشانی-رسوبی سری ریزو و توده‌های نفوذی نیمه-عمیق پروتروزوئیک بالایی-کامبرین زیرین تشکیل شده است. بر اساس تصاویرBSE، در بیشتر بلورهای آپاتیت زون-های روشن و تیره به صورت نامنظم دیده می شود که با تغییرات شیمیایی همراه است. بر اساس آنالیز EPMA مقادیر LREE, Na, Cl در زون‌های تیره نسبت به زون‌های روشن افزایش و مقدار P و Ca کاهش یافته است. رخداد حاشیه‌های واکنشی در اطراف بلورهای آپاتیت، وجود میان‌بارهای کانی‌های عناصر نادر خاکی REEs (مونازیت و زینوتیم) به شکل دانه‌های ریز و پراکنده و نیز پرکننده ترک‌های موئین در زون‌های تیره و تشکیل کانی‌های REEs در مرز بلورهای آپاتیت و مگنتیت، شواهدی از دگرسانی و تحرک دوباره REEs، پس از تبلور اولیه آپاتیت در کانسار گزستان می‌باشد. طی فرایند انحلال-ته‌نشینی همگام، بلورهای آپاتیت اولیه که به هنگام تشکیل کانسنگ آهن-آپاتیت پدید آمده‌اند، به طور بخشی با سیال برهم‌کنش کرده‌اند که این به جابجایی یا شستشو-رسوب دوباره برخی یون‌ها بویژه عناصر نادر خاکی، ایجاد زون‌های آپاتیت تیره و تشکیل دانه‌های ریز و پراکنده مونازیت و زینوتیم در زون‌های تیره و نیز در امتداد درزه های میکروسکپی در آپاتیت‌، کلسیت و کوارتز منجر شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Apatite geochemistry and development of REE minerals related to coupled dissolution-reprecipitation process in the Gazestan deposit, Central Iran

نویسندگان [English]

  • Rasoul Sepehrirad 1
  • Saeid Alirezaei 2
1 Ph.D. Student, Faculty of Earth Sciences, University of Shahid Beheshti, Tehran, Iran
2 Associate Professor, Faculty of Earth Sciences, University of Shahid Beheshti, Tehran, Iran
چکیده [English]

The Gazestan iron-apatite deposit in the Bafq mining district, is hosted in the upper Proterozoic-lower Cambrian volcanic-sedimentary sequence, known as Rizu series, and shallow intrusions. In backscattered electron (BSE) images, the apatite displays irregular light and dark zones with variable compositions. The dark zones contain inclusions of monazite and xenotime, and are distinguished by depletions in LREE+Y, Na and Cl, and enrichments in Ca and P.
Development of reaction rims around apatite crystals, the occurrence of monazite and xenotime as scattered fine grains as well as filling microfractures in the dark zones, and the occurrence of the REE minerals at apatite-magnetite boundary provide evidence for alteration of the original apatite crystals in Gazestan. There is evidence that the apatite crystals formed during original magnetite-apatite ore formation, interacted and reequilibrated with fluids. During a coupled dissolution-reprecipitation process, the original apatite partially reacted with fluids of external origin. This led to leaching/reprecipitation of certain components, in particular the REEs, and development of dark apatite zones with fine, scattered monazite and xenotime grains, as well as the occurrence of fine REE mineral grains across microscopic fractures in apatite, calcite and quartz.

کلیدواژه‌ها [English]

  • "apatite"
  • "Kiruna"
  • "Gazestan"
  • "Monazite-Xenotime"

کتابنگاری

امینی، ب.، رشید، ح. و پشتکوهی، م.، 1383. نقشه زمین شناسی ورقه بافق، مقیاس 1:100000، سازمان زمین شناسی و اکتشافات معدنی کشور.
بنیادی، ز.،1390. کانه­زایی و دگرسانی در کانسار آهن سه­چاهون، بافق، استان یزد، پایان نامه دکترا، دانشگاه خوارزمی، تهران، 181 صفحه.
حافظیان، گ. و جمالی، ح.، 1394. ژئوشیمی و خاستگاه کانسار مگنتیت-آپاتیت گزستان، شرق بافق، پترولوژی، سال ششم، شماره بیست و چهار، صفحه 39-64.
سپهری­راد، ر.، دری، م. و جمالی، ح.، 1387. گزارش پایان عملیات اکتشاف در کانسار گزستان، سازمان زمین شناسی و اکتشافات معدنی کشور، گزارش شماره 4045، 261 صفحه.
سپهری­راد، ر.، علیرضایی، س. و عظیم زاده، ا. م.، 1397. دگرسانی گرمابی در کانسار آهن-آپاتیت گزستان و مقایسه آن با دیگر کانسارهای آهن ناحیه بافق، ایران مرکزی، فصلنامه علمی-پژوهشی علوم زمین، 27(108)، 257-268.  doi: 10.22071/gsj.2017.91765.1189
سهیلی، م. و مهدوی، م.، 1370. نقشه زمین شناسی ورقه اسفوردی، مقیاس 1:100000، سازمان زمین شناسی و اکتشافات معدنی کشور.
قائمی، ف. و سعیدی، ا.، 1385. نقشه زمین شناسی ورقه چادرملو، مقیاس 1:100000، سازمان زمین شناسی و اکتشافات معدنی کشور.
مجیدی، ج. و باباخانی، ع.، 1372. نقشه زمین شناسی ورقه آریز، مقیاس 1:100000، سازمان زمین شناسی و اکتشافات معدنی کشور.
محمدی، ف.، ابراهیمی، م. و مختاری، ع. ا. م.، 1394. سنگ شناسی و ژئوشیمی توده گرانیتوئیدی همیجان و سنگ­های اسیدی همراه (جنوب باختر بهاباد، ایران مرکزی)، فصلنامه علوم زمین، سال بیست و پنجم، شماره 98، 223-236.
مهدوی، م.، 1375. نقشه زمین شناسی ورقه بهاباد، مقیاس 1:100000، سازمان زمین شناسی و اکتشافات معدنی کشور
 
References
Antignano, A. and Manning, C. E., 2008- Fluorapatite solubility in H2O and H2O -NaCl at 700 to 900 °C and 0.7 to 2.0 GPa. Chemical Geology 251, 112–119.
Barton, M.D., 2014- Iron Oxide (–Cu–Au–REE–P–Ag–U–Co) Systems. In: Holland H. D. and Turekian K. K., (eds.) Treatise on Geochemistry Oxford: Elsevier, Second Edition 13, 513–536.
Belousova E. A., Griffin WL, O'Reilly S. Y. and Fisher N.I., 2002- Apatite as an indicator mineral for exploration: trace-element composition and their relationship to host rock type. J Geochem Expl. 76: 45-69.
Bonyadi Z, Davidson G. J., Mehrabi B., Meffre S. and Ghazban F., 2011- Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chem.
Geol. 281: 253-269.
Chen, W. T., and Zhou, M.-F., 2015- Mineralogical and geochemical constraints on mobilization and mineralization of rare earth elements in the Lala Fe-Cu-(Mo, REE) deposit, SW China: American Journal of Science, v. 315, p. 671–711.
Daliran, F. 2002- Kiruna-type iron oxide-apatite ores and “apatitites” of the Bafq District, Iran, with an emphasis on the REE geochemistry of their apatites. In Hydrothermal Iron Oxide Copper-Gold and related deposits (T.M. Porter, ed.). PGC Publishing Australia, Adelaide, Australia (303–320).
Daliran, F., Stosch, H. G., Williams, P., Jamali, H. and Dorri, M. B., 2010- Early Cambrian Iron Oxide-Apatite-REE (U) Deposits of the Bafq District, East-Central Iran. In: Corriveau L, Mumin H (eds) Exploring for Iron oxide copper–gold deposits: Canada and Global analogues. Geol Assoc Canada, Short Course Notes 20; 143–155.
Deer WA, Howie, R. A. and Zussman, J., 2013- An introduction to the rock-forming minerals, 3rd ed. The Mineralogical Society,
London, p 478.
Edfelt, A., 2007. The Tjårrojåkka apatite-iron and Cu (-Au) deposits, Northern Sweden: products of one ore forming event. PhD thesis,
Luleå University of technology, ISSN: 1402-1544.
Frietsch, R. and Perdahl, J. A., 1995- Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9: 489-510.
Groves, D. I., Bierlein, F. P., Meinert, L. D. and Hitzman, M. W., 2010- Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology, 105(3), 641-654.
Haghipour, A., 1977- Geological Map of the Posht-e-Badam Area. Tehran, Geological Survey of Iran, scale 1: 500,000.
Hass, J. R., Shock, E. L. and Sassani, D. C., 1995- Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329-4350.
Harlov, D.E., Wirth, R. and Förster H. J., 2005- An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology 150: 268-286.
Harlov, D. E., 2015- Apatite: A fingerprint for metasomatic processes, Elements, 11, 171–176.
Harlov, D. E., Andersson, U. B., Förster, H. J., Nyström, J. O., Dulski, P. and Broman, C., 2002- Apatite monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem. Geol. 191, 47–72.
Harlov, D.E. and Förster, H.J., 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. Amer. Min. 88, 1209–1229.
Harlov, D. E., Meighan, C. J., Kerr, I. D. and Samson I. M., 2016- Mineralogy, Chemistry, and Fluid-Aided Evolution of the Pea Ridge Fe Oxide-(Y + REE) Deposit, Southeast Missouri, USA, Economic Geology, v. 111, pp. 1963–1984.
Harlov, D. E., Wirth, R. and Förster H. J., 2005- An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology 150: 268-286.
Heidarian, H., Alirezaei, S., and Lentz, D. R., 2017- Apatite chemistry from Kiruna-type Bafq iron deposits, Central Iran: a review, Mineral Resources to Discover - 14th SGA Biennial Meeting 2017, Volume 3.
Heidarian, H., Lentz, D. R., Alirezaei, S., McFarlane, C. R. and Peighambari, S., 2018- Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology. Minerals, 8(3), 87.
Hildebrand, R. S., 1986- Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology, 81(3), 640-659.
Hitzman, M. W., 2000- Iron oxide-Cu-Au deposits: what, where, when, and why. In: Porter, T.M. (Ed.), hydrothermal Iron Oxide Copper gold & Related Deposits: A Global Perspective, volume 1. PGC Publishing, Adelaide, Australia, pp. 9–25.
Hitzman, M. W., Oreskes, N. and Einaudi, M. T., 1992- Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precamb. Res. 58, 241–287.
Jami M., 2005- Geology, Geochemistry and Evolution of the Esfordi Phosphate - Iron Deposit, Bafq Area, Central Iran, Unpublished Ph.D. Thesis. University of New South Wales, Australia.
Knipping, J. L., Bilenker, L. D., Simon, A. C., Reich, M., Barra, F., Deditius, A. P., Wälle, M., Heinrich, C. A., Holtz, F. and Munizaga, R., 2015a- Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and
magmatic-hydrothermal processes. Geochim. Cosmochim. Acta 171, 15–38.
Knipping, J. L., Bilenker, L. D., Simon, A. C., Reich, M., Barra, F., Deditius, A. P., Lundstrom, C., Bindeman, I. and Munizaga, R., 2015b- Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology, 43, 591–594.
Kryvdik, S. and Mykhaylov, V., 2001- The potential of the rare earth mineralization of Islamic republic Iran; National academy of science of Ukraine, 48 pp.
Mao, M., Rukhlov, A. S., Rowins, Spence, J. and Coogan, L. A., 2016- Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration, Economic Geology, v. 111, pp. 1187–1222.
Migdisov, A., Williams-Jones, A. E., Brugger, J. and Caporuscio, F. A., 2016- Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations, Chemical Geology, V.439, 13–42.
Moore, F. and Modabberi, S., 2003- ORIGIN OF CHOGHART IRON OXIDE DEPOSIT, BAFQ MINING DISTRICT, CENTRAL IRAN: NEW ISOTOPIC AND GEOCHEMICAL EVIDENCE, Journal of Sciences, Islamic Republic of Iran 14(3): 259-269.
Nystrom, J. O. and Henriquez, F., 1994- Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Economic Geology, 89(4), 820-839.
Pan, Y. and Fleet, M. E., 2002- Composition of the fluorapatite-group minerals: Substitution mechanisms and controlling factors: Reviews in Mineralogy and Geochemistry, v. 48, p. 13 –49.
Pan, Y., Fleet, M. E., and Macrae, N. D., 1993- Oriented monazite inclusions in apatite porphyroblasts from the Hemlo gold deposit, Ontario, Canada: Mineralogical Magazine, v. 57, p. 697–707.
Piccoli, P. M. and Candela, P. A., 2002- Apatite in igneous systems: Reviews in Mineralogy and Geochemistry, v. 48, p. 255–292.
Putnis, A., 2009- Mineral replacement reactions. Reviews in mineralogy and geochemistry, 70(1), 87-124.
Putnis, A. and Austrheim, H., 2013. Mechanisms of Metasomatism and Metamorphism on the Local Mineral Scale: The Role of Dissolution-Reprecipitation during Mineral Re-equilibration in: D.E. Harlov and H. Austrheim: Metasomatism and the Chemical Transformation of Rock, Lecture Notes in Earth System Sciences, DOI 10.1007/978-3-642-28394-9_5, Springer-Verlag Berlin Heidelberg.
Rahimi, E., Maghsoudi, A. and Hezarkhani, A., 2016- Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district. Journal of African Earth Sciences, 124, 139-150.
Rajabi, A., Canet, C., Rastad, E. and Alfonso, P., 2015- Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the Early Cambrian Zarigan–Chahmir Basin, Central Iran. Ore Geology Reviews, 64, 328-353.
Ramezani, J. and Tucker, R. D., 2003- The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics; American J. Sci. 303; 622–665
Rhodes, A. L. and Oreskes, N., 1999. Geology and Rare Earth Element Geochemistry of Magnetite Deposits at El Laco, Chile. Special Publication- Society of Economic Geologists, 17, 299-332.
Schandl, E. S. and Gorton, M. P., 2004- A textural and geochemical guide to the identification of hydrothermal monazite; criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology 99, 1027–1035.
Stosch, H. G., Romer, R. L., Daliran, F. and Rhede, D., 2011- Uranium-lead ages of apatite from iron oxide ores of the Bafq District, East Central  Iran. Mineral Deposita 46: 9-21.
Sverjensky, D. A., 1984- Europium redox equilibria in aqueous solution. Earth and Planet Sci Lett 67: 70-78.
Taghipour, S., Kananian, A., Harlov, D. and Oberhansli R., 2015- Kiruna type iron oxide apatite deposits, Bafq district, Central Iran: fluid aided genesis of fluorapatite-monazite- xenotime assemblages. Can. Miner., 53: 479-496.
Torab, F. M. and Lehmann, B., 2007- Magnetite–apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineral Mag, 71:347–363
Webster, J. D. and Piccoli, P. M. 2015- Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11(3), 177-182.
Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., De Haller, A., Mark, G., and Marschik, R., 2005- Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Economic Geology, 371-405.
Zhu, C. and Sverjensky D. A., 1991- Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochimica et Cosmochimica Acta, 55:1837-1858.