پتروژنز پیکره های اسیدی قوشچی، بر اساس سن‌سنجی U-Pb زیرکن ها و ژئوشیمی ایزتوپی، شمال باختر ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زمین شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

2 استاد، گروه علوم زمین و محیط زیست، دانشگاهLM ، مونیخ، آلمان

چکیده

درون سنگ‌های مافیک کمپلکس قوشچی (واقع در 70 کیلومتری شمال شهر ارومیه) پیکره‌های اسیدی با ماهیت آلکالی گرانیتی نفوذ یافته‌اند. این محدوده بخشی از زون سنندج-سیرجان با پی‌سنگ دگرگونی به سن پرکامبرین است. این پیکره‌های کوچک گرانیتی دارای مقادیر بالایی از K2O و SiO2 ( بیش از 70 wt% ) هستند. سن سنجی به روش U-Pb دانه‌های زیرکن، حدود Ma 2/2 ± 4/303 تعیین شد که فعالیت ماگمای اواخر کربونیفر - اوایل پرمین را نشان می‌دهد. حضور هسته‌های قدیمی با سن بین 400 تا 600 میلیون سال در برخی زیرکن‌ها، بیانگر حضور سنگ منشاءهای قدیمی‌تر برای سنگ‌های مورد مطالعه است. بر اساس آزمایشات ایزوتوپی سنگ کل، این پیکره‌ها دارای مقدار 3/1- Nd (t) = با11/1TDM = است. این داده‌ها گویای تشکیل آن از ذوب بخشی پوسته اولیه (با سن نئوپروتروزوئیک-کامبرین) در اوایل پرمین است. مقادیر 87Sr/86Sr = 0.752348 و -1.4 =εNd سنگ کل و مقادیر Th/U (بیشتر از 0.5) در زیرکن‌های این توده، مشارکت مواد پوسته‌ای و اندکی ماگمای گوشته‌ای را در ژنز این سنگ‌ها نشان می‌دهد. با توجه به ترکیب کانی‌شناسی یکسان و همسن بودن این پیکره‌های کوچک اسیدی با توده گرانیتی قوشچی استنباط می‌گردد که ارتباط ژنتیکی با گرانیت قوشچی داشته و همانند آن از نوع A هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Petrogenesis of Ghoshchi acidic patches, based on zircon U-Pb dating and isotopic analyses, NW Iran

نویسندگان [English]

  • manijeh Asadpour 1
  • Soraya Heuss 2
1 Assistant Professor, Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
2 Professor, Department of Earth and Environmental Sciences, LM University, Munich, Germany
چکیده [English]

Acidic patches with alkali-granite nature have been intruded within the mafic rocks of the Qushchi complex (70 Km north of Urmia city). This area is northwestern part of the SSz zone with Precambrian basement. These granits have high amounts of K2O and SiO2 (over 70 wt%). Dating by U-Pb age of zircon grains show 303.4 ± 2.2 Ma, indicating late Carboniferous - early Permian magma activity. The presence of older cores in some of zircon grains with age between 400 to 600 Ma, indicate presence of older rocks in the study area. The whole-rock isotopic analysis show negative initial Nd (t) = -1.3 with TDM = 1.61. These data provide evidence for partial melting of crust (with Neoproterozoic- Cambrian age) in early Permian. The 87Sr/86Sr = 0.752348 and εNd = -1.4 of whole rock and Th/U (>0.5) values in zircons show the involvement of more crustal and less mantle components, during the opening of Neo-Tethys Ocean. Due to the same mineralogical and geochemical composition and homogeneity with Qushchi granite, it is inferred that these patches are genetically related to Qushchi granite and are A type granite.

کلیدواژه‌ها [English]

  • U-Pb dating
  • Sm-Nd and Rb-Sr isotopes
  • Acidic patches
  • Qushchi complex
کتابنگاری
اسدپور، م. و هویس، ث.، 1397- شواهد پی­سنگ پان آفریقا در توده لویکوگرانیت قالقاچی (باختر دریاچه ارومیه) با استفاده از داده­های سن­سنجی U-Pb زیرکن­ها و ژئوشیمی ایزتوپ­های Sm-Nd و Rb-Sr سنگ کل، فصل­نامه علوم زمین، سازمان زمین­شناسی و اکتشافات معدنی کشور، سال بیست و هشتم، شماره 109، ص 211-220. DOI: gsj.2018.80138/10.22071
اسدپور، م.، هویس، ث.، و پورمعافی، س. م.، 1392- شواهدی جدید از فعالیت ماگمایی پرکامبرین و پالئوزوییک در توده قره باغ، شمال باختر ایران، فصل نامه علوم زمین، سازمان زمین­شناسی و اکتشافات معدنی کشور، سال بیست و سوم، شماره 89، ص 129-142. DOI:10.22071/gsj.2013.53593
آهنکوب، م.، جهانگیری، ا.، و موید، م.، 1392- پترولوژی و ژئوشیمی سنگ­های مافیک و گرانیت­های A2 میشو در جنوب شرقی مرند، شمال­غرب ایران، مجله زمین­شناسی اقتصادی، شماره 2، جلد 5، ص 233-215. https://doi.org/10.22067/econg.v5i2.31797
خدابنده، آ.، آ. و امینی­ فضل، آ.، 1372 - نقشه زمین­شناسی چهارگوش تسوج 1:100000 ، سازمان زمین­شناسی کشور. http://petrofarhad.blogfa.com/post/46
فضل­نیا، ع.، 1396- محیط زمین­ساختی ماگمای گرانیتوئیدهای نوع A و نفوذی­های مافیک سیاه­باز (شمال­باختر خوی)، مجله پترولوژی، سال هشتم، شماره 30، ص 54-31. DOI: 10.22108/ijp.2017.81971
 
 
References
Advay, M., Jahangiri, A., Mojtahedi, M. and Ghalamghash, J., 2010- Petrology and geochemistry of Ghoshchi batholith, nw Iran, Iranian Journal Crystallography and Mineralogy Vol. 17 No. 4, 716–733. http://ijcm.ir/article-1-562-en.pdf
Alavi, M., 1991- Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran, Geological Society of American Bulletin 103, 983-992. https://doi.org/10.1130/0016-7606(1991)1032.3.CO;2
Alirezaei, S. and Hassanzadeh, J., 2012- Geochemistry and zircon geochronology of the Permian A- type Hsanrobat granite, Sanandaj-Sirjan belt: A new record of the Gondwana break- up in Iran. Lithos 151: 122-134. http://dx.doi.org/10.1016/j.lithos.2011.11.015
Arth, J. G., Criss, R. E., Zmuda, C. C., Foley, N. K., Patton, W. W. and Miller, T. P., 1989- Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane, Geophysical Research, 94:15957-15968. https://doi.org/10.1029/JB094iB11p15957
Azizi, H., Kazemi, T. and Asahara, Y., 2017- A‐type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic. Journal of Geodynamics,108, 56–72. https://doi.org/10.1016/j.jog.2017.05.003
Barker, F., Wones, D. R., Sharp W. N. and Desborough, G. A., 1975- The Pikes Peak Batholith, Colorado Front Range, and a model for the origin of the gabbro-anorthosite-syenite- potassic granite suite, Precambrian Research, 2: 97- 160. https://doi.org/10.1016/0301-9268(75)90001-7
Bea, F., Mazhari, A., Montero, P., Amini, S. and Ghalamghash, J., 2011- Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: Evidence for Variscan magmatism in a supposedly Cimmerian superterrane, Journal of Asian Earth Sciences, 44: 172-179. https://doi.org/10.1016/j.jseaes.2010.08.005
Bedard, J., 1990- Enclaves from the A-type granite of the Megantic complex, White Mountain magma series: clues to granite magmagenesis, Journal of Geophysical Research, 95: 17797–17819. https://doi.org/10.1029/JB095iB11p17797
Belousova, E. A., Griffin, W. L. and O'Reilly, S. Y., 2006- Zircon crystal morphology, traceelement signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids, Journal of Petrology, 47: 329–353. https://doi.org/10.1093/petrology/egi077
Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, 18: 210–265. https://doi.org/10.1139/e81-019
Best, M. G. and Christiansen, E., 2001- Igneous Petrology, Oxford: Blackwell Science, 458pp.     DOI: 10.1017/S0016756802216507
Blatt, H., Tracy, R. J. and Owens, B. E., 2006- Petrology:‌ Igneous, Sedimentary and Metamorphic. 3rd edition. W. H. Freeman  and Company, New York. https://trove.nla.gov.au/work/5521026
Chauvet, F., Lapierre, K., Bosch, D., Guillot, S., Mascle, G., Vannay, J. C., Cotton, J., Brunet, P. and Keller, Z., 2008- Geochemistry of the Panjal Traps basalts (NWHimalaya): records of the Pangea Permian break-up, Bulletin de la SociétéGéologique de France, 179: 383–395. https://doi.org/10.2113/gssgfbull.179.4.383.
Collins, W. J., Beams, S. D.  and White, A. J. R., 1982- Nature and origin of A-type granites with particular reference to south-eastern Australia, Contributions to Mineralogy and Petrology journa, l80: 189-200. https://doi.org/10.1007/BF00374895
Corfu, F., Hanchar, J. M., Hoskin, P. W. and Kinny, P., 2003- Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry 53: 469-500. https://doi.org/10.2113/0530469.
Cox, K. G., Bell, J. D. and Pankhurst, R. J., 1979- The interpretation of igneous rocks, Springer, London, 1–410. http://dx.doi.org/10.1007/978-94-017-3373-1_9.
Dall’Agnol, R. and Oliveira, D. C., 2007- Oxidized, magnetite-series, rapakivi type granites of Carajás, Brazil:  Implications for classification and petrogenesis of A-type granites, Lithos, 93:215-233. https://doi.org/10.1016/j.lithos.2006.03.065.
Dall’Agnol, R., Frost, C. D. and Ramo, T., 2012- IGCP Project 510–A-type Granites and Related Rocks through Time: Project vita, results, and contribution to granite research, Lithos, 151: 1–16. https://doi.org/10.1016/j.lithos.2012.08.003.
De La Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M., 1980- A classification of vol-canic and plutonic rocks using R1-R2 diagramsand major element analyses- its relationship andcurrent nomenclature, Chemical Geology, 29: 193-210. https://doi.org/10.1016/0009-2541(80)90020-0.
DePaolo, D. J., 1981- Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic, Nature, 291: 193-197. http://dx.doi.org/10.1038/291193a0.
DePaolo, D. J., 1988- Neodymium isotope geochemistry: an introduction, Springer Verlag, Berlin, 187 pp.     DOI: https://doi.org/10.1180/minmag.1990.054.376.21.
Eby, G. N., 1990- The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 26: 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z.
Eby, N. G., 1992- Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications, Geology, 20: 641–644. https://doi.org/10.1130/0091-7613(1992)0202.3.CO;2.
Farmer, G. L. and DePaolo, D. J., 1983- Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure, Nd and Sr isotopic studies in the geocline of the northern Great Basin, Geophys, 88: 3379-3401. https://doi.org/10.1029/JB088iB04p03379.
Faure, G., 1986- Principles of isotope geology. Wiley, New York, N.Y., 2nd ed., 589 pp. https://doi.org/10.1017/S0016756800017453.
Faure, G., 2001- Origin of igneous rocks: the isotopic evidences. Springer-Verlag, Heidelberg, 496 pp. http://dx.doi.org/10.1007/978-3-662-04474-2.
Fergussen, C., Nutman, A. P., Mohajjel, M. and Bennett, V., 2016- The Sanandaj-Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U-Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis, Gondwana Research, 40: 43-57. http://dx.doi.org/10.1016/j.gr.2016.08.006.
Fuping, P., Wenliang, X., Debin, Y., Quanguo, Z., Xiaoming, L. and Zhaochu, H., 2007- Zircon U–Pb geochronology of basement metamorphic rocks in the SongliaoBasin, Chinese Science Bulletin, 52: 942–948. https://doi.org/10.1007/s11434-007-0107-2.
Garzanti, E., Le Fort, P. and Sciunnach, D., 1999- First report of lower permian basalts in south Tibet: tholeiitic magmatism during break-up and incipient opening of Neotethys, Journal of Asian Earth Sciences, 17: 533-546. https://doi.org/10.1016/S1367-9120(99)00008-5.
Gerdes, A. and Zeh, A., 2006 - Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, Earth Planet Sciences Letters, 249: 47–61. https://doi.org/10.1016/j.epsl.2006.06.039.
Gerdes, A. and Zeh, A., 2009- Zircon formation versus zircon alteration – new insights from combined U–Pb and Lu–Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt, Chemical geology, 261: 230–243. https://doi.org/10.1016/j.chemgeo.2008.03.005
Ghasemi, A. and Talbot, C. J., 2006- A new scenario for the Sanandaj–Sirjan zone (Iran), Jour-nal of Asian Earth Sciences, 26: 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003.
Hanchar, J. M. and Miller, C. F., 1993- Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories, Chemical Geology, 110: 1-13. https://doi.org/10.1016/0009-2541(93)90244-D
Hassanzadeh, J. and Wernicke, B., 2016- The Neotethyan Sanadaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions, Tectonics, 35: 586-621. https://doi.org/10.1002/2015TC003926.
Hegner, E., Klemd, R., Kröner, A., Corsini, M., Alexeiev, D. V., Iaccheri, L.M., Zack, T., Dulski, P., Xia, X. and Windley, B. F, 2010- Mineral ages and P-T conditions of Late Paleozoic high-pressure eclogite and provenance of Mélange sediments in the south Tianshan Orogen of Kyrgyzstan, American Journal of Science, 310: 916-950. https:// doi.org/10.2475/09.2010.07.
Hegner, E., Walter, H. J. and Satir, M., 1995- Pb-Sr-Nd isotopic compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts under SW Germany, Contributions to Mineralogy and Petrology journal, 122: 322-335. https://doi.org/10.1007/s004100050131.
King, P. L., White, A. J. R., Chappell, B. W. and Allen, M. C., 1997- Characterisation and origin of aluminous A-type granitesfrom the Lachlan Fold Belt South-eastern Australia, Journal of Petrology, 38: 371–391. https://doi.org/10.1093/petroj/38.3.371.
Konieczna, N., Belka, Z. and Dopieralska, J., 2015- Nd and Sr isotopic evidence for provenance of clastic material of the Upper Triassic rocks of Silesia, Poland, Annales Societatis Geologorum Poloniae, 85: 675–684. http://dx.doi.org/10.14241/asgp.2014.008.
Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., Saunders, A., Poulain, S., Kuzmin, D. V., Reichow, M. K. and Titov, A. V., 2002- Petrogenesis of syenite-granite suites from the Bryansky complex (Transbaikalia, Russia): implications for the origin of A-typegranitoid magmas, Chemical Geology, 189: 105–33. https://doi.org/10.1016/S0009-2541(02)00142-0.
Mazhari, S. A., Bea, F., Amini, S., Ghalamghash, J., Molina, J. F., Montero, P., Scarrow, J. H. and Williams, I. S., 2009- The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogeny, Journal of the Geological Society, London, 166: 53-69. https://doi.org/10.1144/0016-76492008-022.
Mohajjel, M., Fergusson, C. L. and Sahandi, M. R., 2003- Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, Western Iran, Journal of Asian Earth Sciences, 21: 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4.
Okay, A.I., Satir, M., Tuysuz, O., Akyuz, S., and Chen, F., 2001- The tectonics of the Strandja Massif: Variscan and mid-Mesozoic deformation and metamorphism in the nort-hern Aegean, International Journal of Earth Sciences, 90: 217-233.     https://doi.org/10.1007/s005310000104.
Patino Douce, A. E., 1997- Generation of metaluminous A-type granites by lower pressure melting of calcalkaline granitoids, Geology, 25: 743-746. https://doi.org/10.1130/0091-7613(1997)0252.3.CO;2.
Philpotts, A. R., 1976- Silicate liquid immiscibility: Its probableextent and petrogenetic significance, American Journal of Science, 276: 1147-117. doi: 10.2475/ajs.276.9.1147.
Rolland, Y., Sosson, M., Adamia, S. and Sadradze, N., 2011- Prolonged Variscan to Alpine historyof an active Eurasian margin (Georgia, Armenia) revealed by40Ar/39Ar dating, Gondwana Research, 20: 798–815. DOI: 10.1016/j.gr.2011.05.007.
Rollinson, H. R., 1993- Using geochemical data: evaluation presentation interpretation, Longman Sceientific and Technical, 352pp. https://doi.org/10.4324/9781315845548.
Rubatto, D., 2002- Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism, Chemical geology, 184: 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2.
Saccani, E., Azimzadeh, Z., Dilek, Y. and Jahangiri, A., 2013- Geochronology and petrology ofthe Early Carboniferous Misho Mafic Complex (NW Iran), and implications for themelt evolution of Paleo-Tethyan rifting in Western Cimmeria, Lithos, 162: 264–278. https://doi.org/10.1016/j.lithos.2013.01.008.
Schoene, B., Dudas, F. O. L., Bowring S. A. and Wit, M. D., 2009- Sm–Nd isotopic mapping of lithospheric growth and stabilization in the eastern Kaapvaal craton, Terra Nova, 21: 219–228. https://doi.org/10.1111/j.1365-3121.2009.00877.x.
Scoates, J. S. and Chamberlain, K. R., 1995- U-Pb baddeleyite and zircon ages of anorthositic rocks in the Laramie Anorthosite Complex, Wyoming, American Mineralogist, 80: 1317-1327. https://doi.org/10.2138/am-1995-11-1223.
Şengör, A. M. C., 1984- The Cimmeride orogenic system and tectonics of Eurasia, Geological Society of America, Special, Paper 195: 82 pp. https://doi.org/10.1130/SPE195-p1.
Shafaii Moghadam, H., Li, X. H., Ling X. X., Stern, R. J., Santos, J. F., Mienhold, G., Ghorbani, Gh. and Shahabi, Sh., 2015- Petrogenesis and tectonic implications of late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints, Journal of Lithos, 212-215: 266-279. https://doi.org/10.1016/j.lithos.2014.11.009.
Shand, S. J., 1974 - Eruptive rocks, their genesis, composition, classification and their relation to ore deposits, 3rd edition: John Wiley and Sons, New York, 724pp. DOI:10.1038/120872a0.
Stampfli, G. M. and Borel, G. D., 2002 - A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrones, arth and Planetary Science Letters, 196: 17-33. http://dx.doi.org/10.1016/S0012-821X(01)00588-X.
Taylor, R. P., Strong, D. F. and Fryer, B. J., 1981- Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks, Contributions to Mineralogy and Petrology, 77: 267–271. https://doi.org/10.1007/BF00373542.
Topuz, G., Altherr, R., Siebel, W., Schwarz, W. H., Zack, T., Hasözbek, A., Barth, M., Satır, M. and Şen, C., 2010- Carboniferous high-potassium I-type granitoid magmatism in theEastern Pontides: The Gümüşhane pluton (NE Turkey), Lithos,116: 92–110. https://doi.org/10.1016/j.lithos.2010.01.003.
Whalen, J. B., Currie, K. L. and Chappell, B. W., 1987- A-type granites: geochemical characteristics, discrimination and petrogenesis, Contributions to Mineralogy and Petrology journal, 95: 407-419. https://doi.org/10.1007/BF00402202.
White, A. J. R. and Chappell, B. W., 1983- Granitoid types and their distribution in the Lachlan Fold Belt, Southeastern Australia, Geological Society of America Bulletin,159: 21-34. https://doi.org/10.1130/MEM159-p21.
Wickham, S. M., Alberts, A. D., Zanvilevich, A. N., Litvinovsky, B. A., Bindeman, I. N. and Schauble, E. A., 1996- A stable isotope study ofanorogenic magmatism in East Central Asia, Journal of Petrology, 37: 1063–1095. https://doi.org/10.1093/petrology/37.5.1063.
Williams, I. S. and Claesson, S., 1987- Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve nappes, Scandinavian Caledonides, II: Ion microprobe zircon U-Th-Pb, Contribution to Mineralogy and Petrology, 97: 205-217. https://doi.org/10.1007/BF00371240.
Yajam, S., Montero, P., Scarrow, J. H., Ghalamghash, J., Razavi, S. M. H. and Bea, F., 2015- The spatial and compositional evolution of the Late Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: SHRIMP zircon U-Pb and Sr and Nd isotope evidence, Geologica Acta, 13: 25-43. https://doi.org/10.1344/GeologicaActa2015.13.1.2.