ژئوشیمی ایزوتوپ های پایدار کربن و اکسیژن در کانسار غیر سولفیدی روی، سرب و مولیبدن احمدآباد (شمال باختر بهاباد)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه زمین شناسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران؛ دانشگاه فرهنگیان، تهران، ایران

2 استاد، گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی؛ گروه زمین شناسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه زمین شناسی، واحد زرند، دانشگاه آزاد اسلامی، کرمان، ایران

چکیده

کانسار احمدآباد یکی از کانسارهای سرب و روی در کمربند فلززایی کوهبنان- بهاباد است که در 10 کیلومتری شمال ­باختر بهاباد در بلوک پشت‌بادام از پهنه ایران مرکزی قرار گرفته ­است. کانسنگ شامل تجمعات کانی­های غیرسولفیدی روی، سرب، مولیبدن و استرانسیم به همراه مقادیر فراوانی اکسید و هیدروکسیدهای آهن است که در سنگ میزبان دولومیتی سازند شتری جای گرفته­اند. یک رگه کوارتزی-کلسیتی نیز ماده معدنی را درسنگ میزبان همراهی می­کند. این مطالعه روی تغییرات ایزوتوپی کربن و اکسیژن  کانسنگ کربناته روی، رگه کوارتزی- کلسیتی و سنگ میزبان دولومیتی متمرکز شده­ است. مقادیر ایزوتوپی کربن نشان داد که نوع کربن سنگ میزبان و رگه کلسیتی متفاوت است. مهم­ترین منبع تأمین کربن برای شکل­گیری هیدروزنسیت سنگ­های کربناته منطقه هستند و از این نظر متفاوت با دیگر کانسارهای غیرسولفید مطالعه شده در جهان است. بر پایه تغییرات ایزوتوپی اکسیژن، دمای تشکیل هیدروزنسیت میان 14 تا 44 درجه­سانتی­گراد در نوسان است. تغییرات ایزوتوپی اکسیژن در رگه کوارتزی- کلسیتی، آب­های حوضه­ای دریایی را به عنوان منشأ پیشنهاد می­کند. دولومیت­ میزبان نیز از سیال‎هایی ته­نشست شده­ است که مقادیر ایزوتوپی اکسیژن آنها آمیختگی میان آب­های ماگمایی و دریایی را نشان می­دهند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stable C-O isotopes geochemistry of Ahmadabad Zn-Pb-Mo non-sufide deposit (NW Bahabad)

نویسندگان [English]

  • S. Amani Lari 1
  • I. Rassa 2
  • A. Amiri 3
1 Ph.D. Student, Geology Department, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Professor, Geology Department, Earth Science Faculty, Shahid Beheshti University; Geology Department, North Tehran Branch, Islamic Azad University, Tehran, Iran
3 Assistant Professor, Geology Department, Zarand Branch, Islamic Azad University
چکیده [English]

Ahmadabad Zn-Pb deposit is one of the Pb-Zn deposits in the Kouhbanan-Bahabad metollogeny Belt, which is located 10th Km northwest of Bahabad City in the Posht-Badam Block in Centeral Iran Zone. Ore deposits consist of Zn, Pn, Mo and Sr non-sulfide minerals with large amount of Fe oxide-hydroxide minerals occurred in dolomitic host rock of the Shotori Formation. A quartz-calcite vein accompanies ores in the host rock.  This study is focused on C-O isotopic variation in the host rock, quartz-calcite vein and hydrozincite.  Isotopic variation of C indicates that the source of carbon is different in the host rock and quartz-calcite vein. The most important source of carbon for hydrozincite formation was carbonate rocks of the area and regarding this aspect this deposit is different from others Zn-Pb non-sulfide deposits that studied in the world. According to oxygen isotopic variation, the temperature for hydrozincite formation was between 14-44˚C. The oxygen isotopic variation  suggests marine basin water as the source of quartz-calcite vein. The dolomitic host rock was formed in equilibrium with fluids of a mixture of marine and magmatic waters, based on oxygen isotopic variation.  
 

کلیدواژه‌ها [English]

  • Carbon- oxygen isotopes
  • Zn-Pb-Mo non-sulfide deposit
  • Ahmadabad deposit

کتابنگاری

امانی لاری، س.، 1395- کانی­شناسی و ژنز کانسار روی-  سرب (مولیبدن) احمدآباد (شمال خاور بافق)، رساله دکترا، دانشگاه آزاد اسلامی، واحد تهران شمال.

امیری، ع. و رسا، ا.، 1385- بررسی ویژگی­های زمین­شناسی کانسارهای استراتاباند غیرسولفیدی روی و سرب در ناحیه کوهبنان- بهاباد، فصلنامه زمین­شناسی کاربردی، دانشگاه آزاد اسلامی واحد زاهدن، سال دوم، شماره اول، صص. 1 تا 9.

امیری، ع.، 1386- مطالعه ویژگی­های زمین­شناسی، ژئوشیمیایی و ژنز کانسارهای روی و سرب با سنگ میزبان کربناته در ناحیه راور- بافق، رساله دکترا، دانشگاه آزاد اسلامی واحد علوم و تحقیقات.

امیری، ع.، رسا، ا.، خاکزاد، ا. و آدابی، م. ح.، 1388- دماسنجی و مدل تشکیل کانسارهای روی و سرب با سنگ میزبان کربناته در ناحیه راور- بافق بر مبنای ایزوتوپ‌های پایدار گوگرد، مجله علوم زمین، شماره ۷۲، صص. 3  تا 10.     

جوانشیر، ع. ر.، راستاد، ا. و ربانی، ا. ر.، 1386- رخساره­های کانه­دار روی- سرب (مولیبدن) احمدآباد، شمال خاور بافق و مقایسه آن با کانسار بلایبرگ (Bleiberg) در آلپ، فصلنامه علوم­ زمین، شماره 71، صص. 69 تا 80.

کریم­زاده، ف. و آدابی، م. ح.، 1387- توصیف انواع دولومیت در سازند شتری (محدوده کوهبنان) بر اساس مطالعات سنگ­شناسی و زمین­شیمیایی، با نگرشی بر نقش شیل­های سازند سرخ­شیل در تأمین یون منیزیم، فصلنامه علمی- پژوهشی علوم­ زمین، سال 18، شماره 69 ، صص. 110 تا 129.

کمالی فرج­اله‌زاده، ع.، 1383- تحلیل هندسی و جنبشی گسل کوهبنان (حد فاصل چترود- کوهبنان)، پایان­نامه کارشناسی ارشد، علوم پایه،دانشگاه تربیت مدرس.

 

References

Ahn, H. I., 2010- Mineralogyand Geochemistry of the Non-sufide Zn Deposits in the Sierra Mojada district, Coahailo, Mexico. Published thesis , University of Texas at Austin, 179 p.

Baerstichi, P., 1957- Messung and Deutung relativer Haufig-skeitvariationen von O18 and C13 in Karbinatgesteinen and Mineralien. Schweiz. Mineral. Petrogr.Mitt.37, 73-152

Boni, M. and Large, D., 2003- Non-sulfide Zinc mineralization in Europe: an overview. Economic Geology 98, 715-729.

Boni, M., Gilg, H. A., Aversa, G. and Balassone, G., 2003- The “Caldamine” of SW Sardinia (Italy): geology, mineralogy nd stable isotope geochemistry of the a supergene Zn-mineralization: Economic Geology, v.98, p. 731-748.

Boni, M., Gilg, H. A., Balassone, G., Sehneider, J., Cameron, R. and Moore, F., 2007- Hypogen Zn Carbonate ores in the Angouran deposit,NW Iran. , Mineral deposita, DOI 10.1007/soo1 26-007-0144-4.

Boni, M., Mondillo, N., Balassone, G., Joachimski, M. and Colella, A., 2013- Zincian dolomite related tosupergene alteration in the Iglesias mining district (SW Sardinia): International Journal of Earth Sciences (Geol. Rundsch.), v. 102, p.61-71.

Borg, G., 2009- The role of fault structures and deep oxidation in supergene base metal deposits. In; Titley, S.R (Ed,), Supergene Environments, Processes and Products, Econ, Geol, Spec. Publ 14, pp, 121-132.

Bowen G., J. and Revenaugh, J., 2003, Interpolating the isotopic composition of modern meteoric precipition. WATER RE SOURCES RESEARCH, vol., 39, NO. 1299.

Clauer, N. and Chaudhuri, S., 1992- Isotopic Signatures if Sedimentary Rocks. Lecture Notes in Earth Sciences, v.43. Springer, Berlin, 529pp.

Clayton, R. M. and Deges, E, T., 1959- Use of C isotope analyses for differentiating fresh-water and marinesediments. AAPG Bull.42, 890-897.

Copploa, V., Boni, M. and Gilg, H. A., 2009- Nonsulfide zinc in the Silesia-Cracow district, Southern Poland, Mineral Deposita, 44:559-580

Dachroth, W. and Sonntag, C., 1983- Grundwasserneubildung und  Isotopendatierung in Sudwesafrika / Nambia. Zeitschrift der Deutschen Geologischen Gesellschaft 134, 1013-1041.

Dachroth, W. and Sonntage, C., 1983- Grundwassemeubildung und Isotoppendatierung in Sudwestafrika/ Nambia. Zeitschrift der Deutschen Geologischen Gesellschaft 134, 1023-104

Diehl, S. F., Hofstra, A. H., Koenig, A. E., Emsbo, P., Christiansen, W. and Johnson, C., 2010- Hydrothermal zebra dolomite in the Great Basin, Nevada – attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits: Geosphere, v.6, p. 663-690.

Egon, T., D. and Epstein, S., 1963- Oxigen and Carbon isotope ratios in coexisting calcites and dolomites feom recent and ancient sediments. Geochimica et Cosmochimica Acta, 1964, Vol.28, pp. 23 to 44. Pergamon Ltd. Printed in Northern Ireland.

Field, C. W and Fifarek, R. H., 1986- Light stableisotope systematics in the epithermal enviroments . In: B. R. Berger and P.M. Bethke (eds.) Geology and geochemistry of epithermal systems. Soc. Econ. Geol., Rev. Economic Geology,vol.2, 99-128.

Gasparrini, M., Bechstadt, T., Bon, M., 2006- Massive hydrothermal dolomites in the southwestern Cantabrian Zone(Spain) and their relation to the Late Variscan evolution. Marine and Petroleum Geology 23: 543-568.

Gilg, H. A. and Boni, M., 2004- Stable isotope composition on Zn and Pb carbonates; their Role in exploration of non-sulphide ores, in M. Boni, ed., Publication- Geology Department and Extension Service, University of Western Australia, Australia, University of Western Australia,   Geology Department and Extension Service: Perth, Eest. Aust., Australia, p. 361-365.erlag, 5th edition, 244p.

Gilg, H. A., Boni, M., Hochleitner, R. and Struck, U., 2008- Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn-Pb deposits: Ore Geology Revews, v.33, p. 117-133.

Gilg, H. A., Struck, U., Vennemann, T. and Boni, M., 2003- Phosphoric acid fractionation factors for smithsonite and cerussite between 25 and 72˚: Geochimica et Cosmochimica Acta, v. 67,p. 4049-4055.

Hitzman, M. W., Reynolds, N. A., Sangster, D. F., Allen, C. R. and Carman, C. E., 2003- Classification, genesis, and exploration guides for nonsulfide Zinc deposits: Economic Geology, v.98, p. 685-714

Hoefs, J., 2004- Stable isotope geochemistry, 5th edition, Springer velag, Berlin, pp: 244.

IAEA, 2008- Isotope Hydroloy Information System. The ISOHIS  Database. Accessible at: http:/isohis.iaea.org

Kerridge, J. F., 1985- Carbon, Hydrogen and nitrogen in carbonaceous chondrites: abundances and isotope compositions in bluk samples. Geochim. Cosmochim.Acta, Voll.49: 1707-1714.

Knauth, L.P. and Epstein, S., 1976- Hydrogen and oxygen isotope ration in nodular and bedded cherts. Geochim. Cosmochim. Acta 40,1095-1108.

Land, L. S., 1985- The origin of massive dolomite. Journal of Geological Education 33, 112-125.

Large, D., 2001- The geology of non-sulfide zinc deposits- an overview. Erzmetall 54, 264-276.

Levresse, G., Gonzalez-Partida, E., Tritalla, J., Camprubl, A., Cienfuegos-Alvarado, E. and Morales-Puente, P., 2003- Fluidcharacteristics if the word-class, carbonate-hosted Las Cuevas fluoritedeposit (San Luis Potosi, Mexico), Journal of geochiemical Exploration 78-79,  537-543.

Mondillo, N., 2014- Supergen Nonsulfide Zinc-Lead Deposits: The Examples og Jaballi (Yaman) and Yanque (Peru), DOCTORAL THESIS in ECONOMIC GEOLOGY, University Digital Studi di Napoel “FEDRICII”, School in Earth Science, 185 p.

Paradis, S., Simandl, G. J., Keevil, S. H. and Raudsepp, M., 2016- Carbonate-Hosted Nonsulfide Pb-Zn Deposits of the Quesnel Lake District, British Columbia, Canada, www. 10.2113/econgeo.111.1.179.  

Perry, E. C. and Tan, F. C., 1972- Significance of oxygen ad carbon isotope variations in early Precambrian cherts and carbonate rock of southern Africa. Geol. Soc. Am. Bull. 83, 647-664.

Rezaeian, A., Rasa, I., Amiri, A. and Jafari, M. R., 2013- Geochemistryof Oxygen and Carbon Stable Isotopes in Non Sulfide Zn-Pb Deposits, Case Study: Chah-Talkh non-Sulfide Zn-Pb Deposit (sirjan-South of Iran),World Applied Sciences Journal 24(9): 1163-1171

Robinson, B. W., 1974- The origin of mineralization at Tui mie,Te Aroha, New Zealand, in the light of stable isotope studies. Economic Geology 69, 910-925.  

Schidlowski, M., Eichmann, R. and Junge, C. E., 1975- Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res. 2, 1-69.

Shamsipour Dehkordi, R., Kermani, N. and Bagheri, H., 2011- Geothermometric and  Isotopic Studies of Kohroyeh PbOre deposit(SW Shahreza), Petrology,1st Year,No. 4, p: 35-44.

Tornos, F. and Sprio, B. F., 2000- The geology and isotope geochemistry of the talc deposits of Puebla de Lillo (Cantabrian Zone, northern Spain). Economic Geology 95, 1277-1296.

Veizer, J. and Hoefs, J., 1976- The nature of  18O/ 16O and 13C/12C secular trends in sedimentary rocks. Geochim. Cosmochim. Acta 40, 1387-1395.

Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O. G., Carden, G. A. F., Jasper, T., Korte, C.,  Strauss, H., Azmy, K. and Ala, D., 1997-Oxygen isotope evolution of Phanerozoic seawater, Paleogeography,Palaeoclimatology, Paleoecology. 132. 159-172.